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Analysing CMB data  
(on the sphere)

□ Where does the spherical sky enter?	

□ Theory	

□ Cℓ𝓁 = Cℓ𝓁[{θi}] 

□ Power spectra	

□ map → aℓ𝓁m → Cℓ𝓁	

□ spherical harmonic transform: Yℓ𝓁m	

□ but: mask and noise	


□ Mapmaking	

□ pixelization of the sky	


□ Polarization	

□ EB decomposition is specific to the 

sphere 	

□ (equivalents exist for other 

manifolds, including flat)

CMB Map
Δp"="Tp"+ np

CMB
Power Spectrum

C#

Cosmological
Parameters

θi = {ns, Ωm, ΩΛ, H0, ...} 

Timestream data
dt

GLS
Mapmaking

Likelihood 
Maximization/
Exploration

MCMC

Detectors

Pr(C# | θi ) = $[C# − C#(θi )]

Pr(Δp | C# ) = N(Δp , Cpp'+Npp') 

Pr(dt | Tp) = N(dt  - Atp Tp, Ntt')



Analysing CMB data  
(on the sphere)

□ CMB as a hierarchical model	

■ can be computed exactly using Gibbs methods, 

approximately using approximations for  
Pr(Ĉℓ𝓁|Cℓ𝓁)	


□ Map and power spectrum are just 
(approximately) sufficient statistics	


□ Radical compression (~sparsity):	

■ 1012 samples ⇾ 107 pixels ⇾  
103 Cℓ𝓁 ⇾ 6 parameters	


□ This version assumes 	

■ isotropic Gaussian signal (no topology)	

■ known & Gaussian noise properties	

■ known (isotropic) beam shape	

■ no foregrounds	

■ no systematics	


□ Even so: compute-bound 𝒪(Npix3):	

■ covariance matrix in mapmaking	

■ likelihood evaluation in Cℓ𝓁 step
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Evidence & Observations: 
Cosmic Microwave Background

□ 400,000 years after the Big Bang, the temperature 
of the Universe was T~3,000 K 

□ Hot enough to keep hydrogen atoms ionized until 
this time	

□ proton + electron → Hydrogen + photon [p+ + e- → H+γ] 
□ charged plasma → neutral gas 

■ depends on entropy of the Universe 
□ Photons (light) can't travel far in  

the presence of charged particles	

□ Opaque → transparent

Opaque

Transparent



□ Initial temperature (density) of the photons 
 

!
□ Doppler shift due to movement of baryon-photon plasma	

□ Gravitational red/blue-shift as photons climb out of potential wells or fall off of 

underdensities 
 
 
 

□ Photon path from LSS to today	

□ All linked by initial conditions ⇒ 10-5 fluctuations

What affects the CMB 
temperature?

Cooler Hotter



CMB: from theory to statistics
□ Start with 3D fields	

■ photon distribution function	

■ gravitational potential (metric)	

■ density of matter components (dark matter, electrons, 

atoms, …)	

■ all linked by physics and initial conditions	

□ early Universe: small fluctuations, approximately Gaussian	

□ linear evolution ⇒ preserves (isotropic) Gaussian distribution



i.e., Fourier 
Transform, but on a 
sphere

Power Spectrum:

Multipole ℓ ∼ angular scale 180°/ℓ
For a Gaussian theory, Cℓ completely determines the statistics 
of the temperature — and is determined by the cosmological 
parameters

Determined by temperature, velocity and metric  
on the last scattering surface. 

z~1300: p+e→H & Universe becomes transparent.

CMB Statistics



The CMB transfer function
!

!

□ compare density spectrum: P(k) = Pi(k)T2(k)	

□ The transfer function depends on the “cosmological 

parameters”. For example:	

■ matter density—determines sound speed in baryon/

photon fluid	

■ curvature—determines angular-diameter distance to 

horizon	

!

□ Actually solve Boltzmann Equation over thickness of Last-Scattering surface – e.g., 
CMBFAST, CAMB

C� =
�

Pi(k)T 2
� (k) dk



Physics of  the CMB  
power spectrum

angular diameter 
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angle on sky

Gravity + plasma physics modulates initial spectrum 
of fluctuations (from, e.g., inflation)

Not actually band-limited!!
(but: beam-smearing)



Theoretical Predictions
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Mapmaking:  
Likelihood Function

□ data model: dt=AtpTp+nt 

■ “design matrix” Atp contains pointing information 

■ 〈nt nt’〉 = Ntt’=N(t-t’)  [Fourier Tr. of N(f)]	


■ stationary, Gaussian noise:	

!

□  
this is a “generalized linear model” 	

!

□ Sphere only arises through locations of “output” pixels Tp	


P (d|TI) =
1

|2�N |1/2
exp

�
�1

2
(d�AT )T N�1(d�AT )

⇥

T̄p = (AT N�1A)�1AT N�1d ��Tp�Tp�⇥ = (AT N�1A)�1



Maps of  the Cosmos  

COBE/DMR

WMAP

MAXIMA

NB. pixelization on 
sphere non-trivial. 
CMB uses “HEALPix”



Pixels and projections



Planck



Pixelization
□ Competing desiderata	

■ fast, approximate, transforms	

□ latitudinal pixels	


■ “sampling-friendly”	

□ i.e., minimal # to reproduce harmonic content to a given ℓ	


■ compact, equal-area pixels	

□ so pixel smoothing ~isotropic and ~constant across map	


■ hierarchical	

□ easy to switch between pixel sizes	


■ nb. need to define full pixels, not just points 	

□ we don’t sample, we convolve	


□ Current favourite: HEALPIX (Gorski et al 2005)	

■ Hierarchical Equal Area isoLatitude Pixelization



Pixelization

□ Gauss-Legendre Sky Pixelization	

■ exact quadrature in x=cosθ	

■ non-equal-area pixels	

■ Doroshkevich et al 

2003,05,09

Doroshkevich et al.: Gauss–Legendre sky pixelization for CMB maps 3

Fig. 3. Schematic representation of 2 types of pixelization on sphere: HEALPix (top) and GLESP (bottom). Various
color of pixels is used to show their shape.

mined from the condition of making the pixel sizes as equal
as possible with the equatorial ring of pixels.

Fig. 1 shows the weighting coefficients, wj , and the
position of pixel centers for the case N = 31. Fig. 2 com-
pares some features of the pixelization schemes used in
HEALPix and GLESP (see Sec. 4). Fig. 3 compares pixel
distribution and shapes on a sphere in the mollview pro-
jections of HEALPix and in GLESP.

In the definition (1) are the coefficients aℓm complex
quantities while ∆T is real. In the GLESP code started
from the definition (1) we use the following representation
of the ∆T

∆T (θ, φ) =
ℓmax
∑
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polynomials (see Gradshteyn and Ryzhik15 2000). In the
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polynomials fm
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where x = cos θ, and θ is the polar angle. These poly-
nomials, fm

ℓ (x), can be calculated using two well known
recurrence relations. The first of them gives fm
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given m and all ℓ > m:
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CMB Data Analysis: 
Spectrum estimation

■ Model the sky as a correlated, statistically isotropic 
Gaussian random field	

!
!
!
!
!
!

□ goal: characterise this over the space of Cℓ𝓁 (or parameters in Cℓ𝓁 = Cℓ𝓁[{θi}]	

□ direct computation prohibitive for high-res/full-sky	

■ complicated and expensive function of Cℓ	

□ Many practical issues in calculating this explicitly. 	

□ At low ℓ, use sampling (usu. Gibbs), Newton-Raphson, Copula	

□ At high ℓ, approximate by a function of estimated (ML) Cℓ and errors & 

some other information Xℓ

spherical harmonic 
wavenumber ℓ

T (x̂)� T̄

T̄
⇥ �T

T
(x̂) =

�

�m

a�mY�m(x̂)

Parametric version  
of cov. mat. est’n: 
diag in ℓ basis

�a��ma��m�⇥ = �����mm� C�

P (T̄ |C⇥) =
1

|2�(S + N)| exp�1
2
T̄T (S + N)�1T̄
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�

�
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4�

C�B
2
� P�(x̂p · x̂p�)



Pseudo-spectra
□ In practice, this Bayesian method is too expensive.	

□ What is Cℓ𝓁?	

■ Variance of distribution?	

■ Sky average?	

■ Ergodic average? 
 
Use “pseudo-Cℓ𝓁”: 	

!

■ this combination only appears in likelihood function in the limit of 
full sky and uniform noise 	


■ w/ some sort of apodization/weighting	

■ frequentist linear reweighting/debiasing

b
D` =

1

m

X

m

|d`m|2 d`m =
X

p

d(x̂p)Y`m(x̂p)

D
M``0

bD` +N`

E
= C`

      

� 

1
2ℓ + 1

aℓm
2

ℓ

∑

  

� 

a
ℓm
2 } Coincide for full-sky, 

Gaussian distributed, 
noise-free map



The (more realistic) CMB
□ Cannot (computationally) afford idealogical purity	

□ Yℓ𝓁m are no longer good eigenmodes in the presence of 

noise and mask	

□ KL (aka SN-eigenmode) is general solution, but bespoke 

(and very expensive)	

■ Use (MASTER-like) frequentist algorithms and interpret results as 

if they are Bayesian	

□ i.e., assume asymptotic limit, and analogies with full-sky uniform-noise case 

which has numerical agreement between MLE and frequentist mean 
(sufficient statistics)	


■ Component separation	

□ priors motivate inference and algorithms	

□ physical information about components	

□ mathematical classification of foreground-signal properties — the sphere	


□ e.g., use of (various species of) spherical wavelets



CMB Likelihoods:  
cosmology and foregrounds

□ Model residual foreground contamination as an 
isotropic [~Gaussian] field with known (or 
parameterised) spectral shape 

Planck collaboration: CMB power spectra & likelihood

Figure 13. Foreground model over the full range of HFI cosmological frequency combinations. The upper panel in each plot shows
the residual between the measured power spectrum and the ‘best-fit’ primary CMB power spectrum, i.e., the unresolved foreground
residual for each frequency combination. The lower panels show the residuals after removing the best-fit foreground model. The
lines in the upper panels show the various foreground components. Major foreground components are shown by the solid lines,
colour coded as follows: total foreground spectrum (red); Poisson point sources (orange); CIB (blue); thermal SZ (green). Minor
foreground components are shown by the dotted lines: kinetic SZ (green); tSZ X CIB cross correlation (purple). The 100 ⇥ 143 and
100 ⇥ 217 GHz spectra are not used in the CamSpec likelihood. Here we have assumed rPS

100⇥143 = 1 and rPS
100⇥217 = 1.
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Planck collaboration: CMB power spectra & likelihood

0.0216 0.0224

�bh2

0.112 0.120 0.128

�ch2

1.040 1.042

100�MC

0.06 0.09 0.12

�

0.925 0.950 0.975

ns

3.04 3.12

ln(1010As)

15 30 45

ACIB
143

20 40 60

ACIB
217

0.25 0.50 0.75

rCIB
143�217

8 16 24

AtSZ

0.25 0.50 0.75

�tSZ�CIB

0.25 0.50 0.75

�CIB

100 200 300

APS
100

30 60 90

APS
143

40 80 120

APS
217

0.4 0.6 0.8

rPS
143�217

10 20 30

AkSZ

Camspec reference

Figure 12. Marginal posterior distributions for the six cosmolo-
gical (top two rows) and eleven nuisance parameters (lower four
rows) estimated with the CamSpec likelihood.

Planck has a limited ability to disentangle foregrounds. While
the Planck data constrain the Poisson point source amplitudes at
each frequency, as well as the CIB amplitude at 217 GHz (which
dominates over the Poisson point source amplitude over much of
the multipole range), they have only marginal sensitivity to the
tSZ amplitude in the 100⇥100 spectrum, though the thermal SZ
is strongly degenerate with the Poisson point source amplitude.
The remaining foreground parameters are highly degenerate. For
Planck alone, these minor foreground contributions combine to
absorb inter-frequency residuals.

Pairs of spectra are compared in Fig. 14, averaged over bands
of width �` = 31 below ` . 2000 and wider bands above 2000.
(The error bars show the diagonals of the covariance matrices
of these averages, but it is important to note that the points are
highly correlated even with bin widths as large as these.) This
comparison shows that each of the spectra used in the CamSpec
likelihood is consistent with the best-fit theoretical spectrum to
high accuracy. In fact, each spectrum can be used to form a like-
lihood, and each gives a reduced �2 close to unity (see Table 4).
Thus, the six parameter ⇤CDM model provides an excellent fit
to the Planck high-` power spectra at all frequencies between
100 and 217 GHz.

Figure 15 shows our maximum likelihood primary CMB
spectrum, together with the best-fit theoretical spectrum. The re-
siduals with respect to the model are shown in the lower panel.
The error bars are computed from the diagonal components of
the band-averaged covariance matrix. The binning scheme is the
same as in Fig. 14.

Finally, in Fig. 16 we zoom in on this spectrum in four multi-
pole ranges using finer binning. The correlated fluctuations seen
in this figure are mask-induced, and perfectly compatible with
the six parameter ⇤CDM model. Features such as the ‘bite’
missing from the third peak at ` ⇠ 800 and the oscillatory fea-
tures in the range 1300 . ` . 1500 are in excellent agreement
with what we expect from our covariance matrices and from sim-
ulations; see Appendix A.4 for a few specific examples.

6. Accuracy assessment of the high-` likelihoods

In this section we compare the power spectra and likelihoods
derived using our two independent methods, and test the likeli-
hoods using full Planck simulations.

6.1. Comparison of the Plik and CamSpec likelihoods

To allow a consistent comparison between the CamSpec and
Plik likelihoods, we use the same frequency cross-spectra for
both codes in the following, i.e., we discard the 100 ⇥ 143 and
100 ⇥ 217 GHz frequency combinations from the default Plik
likelihood. To achieve this, we modify the Plik likelihood to
use the fiducial Gaussian approximation instead of the Kullback
divergence. On the other hand, while we use the same multipole
coverage, 100  `  2500, and only one mask (CL39) for all
cross-spectra for Plik, we still use multipole ranges and masks
as defined in Table 4 for CamSpec. In addition, we perform one
Plik analysis with the CL49 mask, which matches the CamSpec
mask at 100 GHz.

The left column of Fig. 17 shows the di↵erences between
the Plik power spectra, adopting the above validation settings,
and the corresponding best-fit model. The right column shows
the total spectra decomposed into cosmological and foreground
components. The residuals agree with those in Fig. 13, and do
not show any evidence of features, except for some excess power
in the 217 ⇥ 217 GHz spectra at small scales, where foreground
modelling has the highest impact. At scales ` . 1500, the re-
siduals are coherent between cross spectra as they are computed
with the same Galactic mask, and the residuals are dominated by
cosmic variance. At smaller scales (` & 1500) the residuals are
dominated by noise and become uncorrelated.

In Fig. 18 we show the CMB power spectrum recovered
by Plik estimated by removing the best-fit foreground amp-
litudes from each cross-spectrum and computing their optimally
weighted average, and the corresponding di↵erence with respect
to the best-fit ⇤CDM model. The large scatter at low multipoles
is expected due to cosmic variance. The residual scatter at higher
multipoles is at the ±20 µK2 level, demonstrating the good fit
provided by the sum of the ⇤CDM and foreground models.
These CMB residuals can be compared to the CamSpec inverse-
covariance weighted CMB residuals shown in Fig. 15, which are
of the same order of magnitude. Thus, the Planck likelihood fit
to the ⇤CDM model is robust with respect to the detailed shape
of the likelihood, as quantified in terms of power spectrum re-
siduals.

The ⇤CDM parameter constraints derived from the two like-
lihoods are shown in Fig. 19, while Fig. 20 shows the fore-

14



Spectra and likelihoods
□ Cosmologists don’t (shouldn’t) actually care about Cℓ𝓁.	


!
■ What we really want is a good way to compress the 

likelihood P(cosmology | data)	

■ P(d|θ) = P(d|Cℓ𝓁[θ])	

■ In general, complicated O(N3) fn  

of the data, but there are various 
ansatze



Expected errors
□ Estimating the error (variance1/2) on a variance (Cℓ)	

□ 〈δCℓ δCℓ〉 = 〈aℓm aℓm aℓm aℓm〉-〈aℓm aℓm〉〈aℓm aℓm〉 
■ Wick’s theorem: 〈a4〉=3〈a2〉2	

■ CMB case: Knox 95, Hobson & Magueijo 96	

□ need to account for (2ℓ +1)fsky measurements of each ℓ 

!
!
!
!
!
!

□ Bandpowers: bin in ℓ (weighted for specific Cℓ shape) to reduce 
errors and decrease covariance

  

� 

δCℓ( )2 ≅ 2
(2ℓ +1) f sky

Cℓ + Nℓ( )2 Nℓ ≈ w
−1 = θpσ p( )−2

# of modes Sample 
(cosmic) 
Variance

Noise variance  
~(weight per sr)



Planck errors
Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter�CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ⇥ = 50, and linear beyond. The vertical scale is ⇥(⇥+ 1)Cl/2�. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-⇥ region.

2 10 50
0

1000

2000

3000

4000

5000

6000

D
�[
µ
K
2 ]

90� 18�

500 1000 1500 2000

Multipole moment, �

1� 0.2� 0.1�
Angular scale

Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ⇥ = 50,
and linear beyond. The vertical scale is ⇥(⇥ + 1)Cl/2�. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di⇥ers from the ERCSC in its extraction philosophy: more e⇥ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di⇥erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di⇥erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

Results: power spectrum
Main result: Exquisite measurement of the temperature power 
spectrum

Error band: cosmic variance estimate  
error bars: cosmic + noise variance



Polarization: Physics
□ Ionized plasma + quadrupole radiation field: 	

■ Thomson scattering ⇒ [linearly] polarized emission	


!
!

□ Unlike intensity, only generated when ionization  
fraction, 0<x<1 (i.e., during transition)  

q Scalar perturbations: traces ~gradient of velocity	

§ same initial conditions as temperature and density fluctuations	


□ Tensor perturbations: independent of density fluctuations 	

■ +,× patterns of quadrupoles (impossible to form via linear scalar 

perturbations)	

■ at last-scattering, from primordial background of gravitational 

radiation, predicted by inflation (cf. Senatore’s lectures)

e

HOT

COLD



□ 2-d (headless) vector field on a sphere	

□ Spin-2/tensor spherical harmonics	

□ grad/scalar/E + curl/pseudoscalar/B patterns 
 
 
 

□ NB.  From polarization pattern ⇒ E/B 
decomposition requires integration (non-local) or 
differentiation (noisy)	

■ Lewis et al; Bunn et al; Smith & Zaldarriaga; Grain et al; 

Bowyer & AJ; … 	

■ (data analysis problems)

Polarization: E/B

Seljak & Zaldarriaga

E E B B



B modes ⇒ gravitational waves? 
□ Everything generates 

E modes	

□ Everything except 

scalar perturbations 
generate B modes	

!

□ If we can rule out 
lensing, foregrounds 
and instrumental 
effects, B modes are a 
signature of 
gravitational radiation 
in the early Universe

observable nonzero value is 0.002. Most of the TT, TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not included
in the table and figure). The signal-to-noise ratio in TT is
∼104 so tiny differences in absolute calibration between the
data subsets can cause jackknife failure, and the same is
true to a lesser extent for TE and TB. Even in EE the signal
to noise is approaching ∼103 (500 in the l ≈ 110 bin) and
in fact most of the low values in the table are in EE.
However, with a maximum signal-to-noise ratio of ≲10 in
BB such calibration differences are not a concern. All the
BB (and EB) jackknifes are seen to pass, with the 112
numbers in Table I having one greater than 0.99, one less
than 0.01 and a distribution consistent with uniform. Note
that the four test statistics for each spectrum and jackknife
are correlated this must be taken into account when
assessing uniformity.
To form the jackknife spectra we difference the maps

made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power
spectrum amplitude of a contribution which is uncorrelated
in the two halves (such as noise) constant, while a fully
correlated component (such as sky signal) cancels perfectly.
The amplitude of a component which appears only in one
half will stay the same under this operation as it is in the
fully coadded map and the apparent signal-to-noise will
also stay the same. For a noise-dominated experiment this
means that jackknife tests can only limit potential

contamination to a level comparable to the noise uncer-
tainty. However, the BB band powers shown in Fig. 2 have
signal-to-noise as high as 10. This means that jackknife
tests are extremely powerful in our case—the reductions in
power which occur in the jackknife spectra are empirical
proof that the B-mode pattern on the sky is highly
correlated between all data splits considered.
We have therefore conducted an unusually large number

of jackknife tests trying to imagine data splits which might
conceivably contain differing contamination. Here we
briefly describe each of these:
BICEP2 observed at deck angles of 68°, 113°, 248° and

293°. We can split these in two ways without losing the
ability to make Q and U maps (see Sec. IVG). The deck
jackknife is defined as 68° and 113° vs 248° and 293° while
the alt. deck jackknife is 68° and 293° vs 113° and 248°.
Uniform differential pointing averages down in a coad-
dition of data including an equal mix of 180° complement
angles, but it will be amplified in either of these jackknifes
(as we see in our simulations). The fact that we are passing
these jackknifes indicates that residual beam systematics of
this type are subdominant after deprojection.
The temporal-split simply divides the data into two

equal weight parts sequentially. Similarly, but at the
opposite end of the time scale range, we have the scan
direction jackknife, which differences maps made from the
right and left going half scans, and is sensitive to errors in
the detector transfer function.
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FIG. 3 (color). Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < l < 120. Right: The equivalent maps for the first of
the lensed-ΛCDMþ noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines
display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over lensing+noise with
high signal-to-noise ratio in the map (s=n > 2 per map mode at l ≈ 70). (Also note that the E-mode and B-mode maps use different
color and length scales.)
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□ Scalar and tensor modes are isotropic, parity-
symmetric fields on the sky. 	


□ T is a scalar, E is the “gradient” of a scalar, B is the 
“curl” of a pseudoscalar	

!

!

!

!

!

■ expect 〈EB〉=〈TB〉= 0 
■ try to measure 〈TT〉, 〈BB〉, 〈EE〉, 〈TE〉 
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where the sYlm are spin-weighted spherical harmonics[13] with integer spin weight s — reduc-

ing to the standard spherical harmonics Ylm for s = 0 — n̂ is the chosen coordinate basis and

the aXlm are the s = 0 harmonic coefficients of X = {E,B}. Since one can decompose vector and

tensor fields into curl and divergence parts, and cosmological vector fields decay exponentially

in the inflationary scenario, the decomposition of tensor perturbations corresponds uniquely to

the E- and B-modes. In the real universe of course, the situation is conflated by the presence of
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Polarization: math



The Polarization of  the CMB
§ Anisotropic radiation field at last 

scattering → polarization	

§ “Grad” or E mode	

§ Breaks degeneracies	

§ New parameters:	


§ reionization	

§ “Curl” or B sensitive to  

 gravity waves	

§ “Smoking gun” of inflation?	

§ Very low amplitude	


§ Need better handle on 
systematics, and...	


§ Polarized foregrounds?

Temperature  
(determined by params)

E-Mode Pol 
(determined by params)

B-Mode Pol 
(depends on inflation)

E E B B

(no lensing)



Polarization: data
□ Formally the same problem	

□ dp ⇒ (i,q,u)p = di,p = dq 	
 	
 ⟨dq dq’⟩ = Nqq’+Sqq’	

□ Correlation matrix become combination of  

⟨TT⟩, ⟨TE⟩, ⟨EE⟩, ⟨BB⟩ (other combinations usu. vanish)	

■ Sphere enters in this calculation through ±2Yℓ𝓁m, Pℓ𝓁, &c	


□ Sometimes useful to actually transform from Q/U→E/B	

■ “trivial” on full (pixelized) QU sky with no noise. 	

■ realistic case more complicated (e.g., Smith & Zaldariagga)	

□ harmonic analyses (e.g., Kim 2010)	

□ real-space finite differences (Bowyer, AHJ, Novikov 2011)	

□ still have to “undo” Laplacian to get to true e/b scalars	

■ inherently nonlocal



Polarization: E/B Separation



Polarization: State of  the Art



non-Gaussianity: fNL

□ Heuristically 
for a Gaussian ϕG (e.g., multi-field inflation) 
■ This is the (spatially) local model for non-Gaussianity	

■ Induces specific 3-d correlations 
 
 
 
and hence 2-d correlations in the CMB	


■ Corresponds to Fourier bispectrum B(k1, k2, k3) which 
peaks in squeezed case k1≪k2≃k3	


□ modulate small-scale structure by large-scale modes	

■ cf. galaxy bias	


■ More generally, consider other shapes (e.g., equilateral) 
motivated by specific theories

� = �G + fNL(�
2
G � h�2

Gi)

h���i ⇠ 3fNL (h�G�G�G�Gi � h�G�Gih�G�Gi) +O(f2
NL)

⇠ 6fNLh�G�Gih�G�Gi+O(f2
NL)



non-Gaussianity on the sphere
□ Consider the “connected” n-

point functions 
 
isotropy gives a constraint 
on the {ℓimi} 	

□ equivalent to Euclidean 
k1+k2+⋯+kn = 0 

□ (seen in vanishing of 3-j, 6-j, 
Wigner D, … functions)	


ha`1m1a`2m2 · · · a`nmnic

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

also possible in single-field models of inflation with higher-
derivative interactions (see, e.g., Chen et al. 2009; Arroja et al.
2009; Senatore & Zaldarriaga 2011; Bartolo et al. 2010b), but
these would be suppressed in the squeezed limit since they
are generated by derivative interactions at horizon-crossing, and
hence only project weakly onto the local shapes. These equi-
lateral trispectra arise can be well-described by some template
forms (Fergusson et al. 2010b). Naturally, higher-order correla-
tions could also be considered, but are not directly studied in this
paper.

3. Statistical estimation of the CMB bispectrum

In this Section, we review the statistical techniques that we use
to estimate the nonlinearity parameter fNL. We begin by fixing
some notation and describing the CMB angular bispectrum in
Sect. 3.1. We then introduce in Sect. 3.2 the optimal fNL bispec-
trum estimator. From Sect. 3.2.1 onwards we describe in detail
the di↵erent implementations of the optimal estimator that were
developed and applied to Planck data.

3.1. The CMB angular bispectrum

Temperature anisotropies are represented using the a`m coe�-
cients of a spherical harmonic decomposition of the CMB map,

�T
T

(n̂) =
X

`m

a`mY`m(n̂) ; (22)

we write C` = h|a`m|2i for the angular power spectrum and Ĉ` =
(2` + 1)�1 P

m |a`m|2 for the corresponding (ideal) estimator; hats
“ˆ” denote estimated quantities. The CMB angular bispectrum
is the three-point correlator of the a`m:

Bm1m2m3
`1`2`3

⌘ ha`1m1 a`2m2 a`3m3i. (23)

If the CMB sky is rotationally invariant, the angular bispectrum
can be factorized as follows:

ha`1m1 a`2m2 a`3m3i = G`1`2`3m1m2m3
b`1`2`3 , (24)

where b`1`2`3 is the so called reduced bispectrum, and G`1`2`3m1m2m3 is
the Gaunt integral, defined as:

G`1`2`3m1m2m3
⌘ R

Y`1m1 (n̂) Y`2m2 (n̂) Y`3m3 (n̂) d2
n̂

= h`1`2`3

 

`1 `2 `3
m1 m2 m3

!

, (25)

where h`1`2`3 is a geometrical factor,

h`1`2`3 =

r

(2`1 + 1)(2`2 + 1)(2`3 + 1)
4⇡

 

`1 `2 `3
0 0 0

!

. (26)

The Wigner-3 j symbol in parentheses enforces rotational sym-
metry, and allows us to restrict attention to a tetrahedral domain
of multipole triplets {`1, `2, `3}, satisfying both a triangle condi-
tion and a limit given by some maximum resolution `max (the
latter being defined by the finite angular resolution of the ex-
periment under study). This three-dimensional domain VT of
allowed multipoles, sometimes referred to in the following as a
“tetrapyd”, is illustrated in Fig. 1 and it is explicitly defined by

Triangle condition: `1  `2 + `3 for `1 � `2, `3,+perms.,
Parity condition: `1 + `2 + `3 = 2n , n 2 N , (27)
Resolution: `1, `2, `3  `max , `1, `2, `3 2 N .

Fig. 1. Permitted observational domain of Eq. (27) for the CMB bispec-
trum b`1`2`3 . Allowed multipole values (`1, `2, `3) lie inside the shaded
“tetrapyd” region (tetrahedron+pyramid), satisfying both the triangle
condition and the experimental resolution ` < L⌘ `max.

Here, VT is the isotropic subset of the full space of bispectra,
denoted byV.

One can also define an alternative rotationally-invariant re-
duced bispectrum B`1`2`3 in the following way:

B`1`2`3 ⌘ h`1`2`3
X

m1m2m3

 

`1 `2 `3
m1 m2 m3

!

Bm1m2m3
`1`2`3

. (28)

Note that this B`1`2`3 is equal to h`1`2`3 times the angle-averaged
bispectrum as defined in the literature. From Eqs. (24) and (25),
and the fact that the sum over all mi of the Wigner-3 j symbol
squared is equal to 1, it is easy to see that B`1`2`3 is related to the
reduced bispectrum by

B`1`2`3 = h2
`1`2`3

b`1`2`3 . (29)

The interest in this bispectrum B`1`2`3 is that it can be estimated
directly from maximally-filtered maps of the data:

B̂`1`2`3 =
Z

d2
n̂T`1 (n̂)T`2 (n̂)T`3 (n̂) , (30)

where the filtered maps T`(n̂) are defined as:

T`(n̂) ⌘
X

m

a`mY`m(n̂) . (31)

This can be seen by replacing the Bm1m2m3
`1`2`3

in Eq. (28) by its
estimate a`1m1 a`2m2 a`3m3 and then using Eq. (25) to rewrite the
Wigner symbol in terms of a Gaunt integral, which in its turn
is expressed as an integral over the product of three spherical
harmonics.

3.2. CMB bispectrum estimators

The full bispectrum for a high-resolution map cannot be eval-
uated explicitly because of the sheer number of operations in-
volved, O(`5max), as well as the fact that the signal will be too

9
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□ Spherical manifold also enters in choice of an estimator for the 
n-point function (or fNL) — usually start from estimates of 
harmonic coefficients aℓ𝓁m	
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= 2.7± 5.8

f equil

NL

= �42± 75

fortho
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= �25± 39



Conclusions
□ The CMB lives on the sphere	

□ Simple description of signal: Cℓ𝓁	

□ Noise, masking, etc break the  

symmetries	

□ Brute force statistical approaches  

(optimal, Bayesian) don’t really take  
advantage of the available mathematics	

■ But too expensive in practice (on large datasets)	


□ realistic (approximate) methods (pseudo-spectra, 
component separation, E/B separation, …) have all 
taken advantage of the spherical signal


