Imperial College London

The Cosmological Context: CMB analysis formalism

Andrew Jaffe Imperial College

Science on the Sphere July 2014

ICIC Imperial Centre for Inference & Cosmology

Parts of this talk may have been based on data and ~30 papers released March 2013 by the 400-person Planck Collaboration

Analysing CMB data (on the sphere)

Analysing CMB data (on the sphere)

CMB as a hierarchical model

- can be computed exactly using Gibbs methods, approximately using approximations for $Pr(\hat{C}_{\ell}|C_{\ell})$
- Map and power spectrum are just (approximately) sufficient statistics
- Radical compression (~sparsity):
 - I0¹² samples → I0⁷ pixels →
 I0³ C_ℓ → 6 parameters
- This version assumes
 - isotropic Gaussian signal (no topology)
 - known & Gaussian noise properties
 - known (isotropic) beam shape
 - no foregrounds
 - no systematics
- Even so: compute-bound $\mathcal{O}(N_{\text{pix}}^3)$:
 - covariance matrix in mapmaking
 - Iikelihood evaluation in C_{ℓ} step

Evidence & Observations: Cosmic Microwave Background

Opaque

Transparent

- 400,000 years after the Big Bang, the temperature of the Universe was T~3,000 K
- Hot enough to keep hydrogen atoms ionized until this time
 - □ proton + electron \rightarrow Hydrogen + photon $[p^+ + e^- \rightarrow H + \gamma]$
 - charged plasma \rightarrow neutral gas
 - depends on entropy of the Universe
- Photons (light) can't travel far in the presence of charged particles
 - **Opaque** \rightarrow transparent

What affects the CMB temperature?

- Photon path from LSS to today
- All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

CMB: from theory to statistics

Start with 3D fields

- photon distribution function
- gravitational potential (metric)
- density of matter components (dark matter, electrons, atoms, ...)
- all linked by physics and initial conditions
 - early Universe: small fluctuations, approximately Gaussian
 - linear evolution \Rightarrow preserves (isotropic) Gaussian distribution

CMB Statistics

z~1300: p+e \rightarrow H & Universe becomes transparent.

$$\frac{T(\hat{x}) - \bar{T}}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{x})$$

i.e., Fourier Transform, but on a sphere

Determined by **temperature**, **velocity** and **metric** on the last scattering surface.

Power Spectrum:

$$\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

Multipole ℓ ~ angular scale $180^{\circ}/\ell$

For a **Gaussian** theory, C_{ℓ} completely determines the statistics of the temperature — and is determined by the cosmological parameters

The CMB transfer function

$$C_{\ell} = \int P_i(k) T_{\ell}^2(k) \, dk$$

• compare density spectrum: $P(k) = P_i(k)T^2(k)$

- The transfer function depends on the "cosmological parameters". For example:
 - matter density—determines sound speed in baryon/ photon fluid
 - curvature—determines angular-diameter distance to horizon
 - Actually solve Boltzmann Equation over thickness of Last-Scattering surface e.g., CMBFAST, CAMB

Physics of the CMB power spectrum

Gravity + plasma physics modulates initial spectrum of fluctuations (from, e.g., inflation)

Theoretical Predictions

Mapmaking: Likelihood Function

data model:
$$d_t = A_{tp}T_p + n_t$$

- "design matrix" A_{tp} contains pointing information
- $\langle n_t n_{t'} \rangle = N_{tt'} = N(t-t')$ [Fourier Tr. of N(f)]
- stationary, Gaussian noise: $P(d|TI) = \frac{1}{|2\pi N|^{1/2}} \exp\left[-\frac{1}{2}(d - AT)^T N^{-1}(d - AT)\right]$ this is a "generalized linear model" $\bar{T}_p = (A^T N^{-1}A)^{-1}A^T N^{-1}d \qquad \langle \delta T_p \delta T_{p'} \rangle = (A^T N^{-1}A)^{-1}$ Sphere only arises through locations of "output" pixels T_P

Maps of the Cosmos

Pixels and projections

Planck

Pixelization

Competing desiderata

- fast, approximate, transforms
 - latitudinal pixels
- "sampling-friendly"
 - i.e., minimal # to reproduce harmonic content to a given l
- compact, equal-area pixels
 - so pixel smoothing ~isotropic and ~constant across map
- hierarchical
 - easy to switch between pixel sizes
- nb. need to define full pixels, not just points
 - we don't sample, we convolve
- Current favourite: HEALPIX (Gorski et al 2005)
 - Hierarchical Equal Area isoLatitude Pixelization

Pixelization

HEALPIX -GLESP-Gauss-Legendre Sky Pixelization exact quadrature in x=cosθ non-equal-area pixels Doroshkevich et al

2003,05,09

CMB Data Analysis: **Spectrum estimation**

Model the sky as a correlated, statistically isotropic Gaussian random field

$$\frac{T(\hat{x}) - \bar{T}}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{x}) \qquad \langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} \widehat{C_{\ell}}$$
Parametric version
of cov. mat. est'n:
diag in \ell basis
$$\langle T_p T_{p'} \rangle = \widehat{S_{pp'}} = \sum_{\ell} \frac{2\ell + 1}{4\pi} \widehat{C_{\ell}} B_{\ell}^2 P_{\ell}(\hat{x}_p \cdot \hat{x}_{p'}) \qquad \text{spherical harmonic}$$
wavenumber ℓ

$$P(\bar{T}|C_{\ell}) = \frac{1}{|2\pi(S+N)|} \exp{-\frac{1}{2}\bar{T}^T(S+N)^{-1}\bar{T}}$$

 \Box goal: characterise this over the space of C_{ℓ} (or parameters in $C_{\ell} = C_{\ell}[\{\theta_i\}]$

direct computation prohibitive for high-res/full-sky

of

ICIC

- complicated and expensive function of C_{ℓ}
 - Many practical issues in calculating this explicitly.
 - At low ℓ , use sampling (usu. Gibbs), Newton-Raphson, Copula
 - At high ℓ , approximate by a function of estimated (ML) C_{ℓ} and errors & some other information X_ℓ

Pseudo-spectra

- In practice, this Bayesian method is too expensive.
- What is C_{ℓ} ?
 - Variance of distribution?
 - Sky average? $\frac{1}{2\ell+1}\sum_{\ell}|a_{\ell m}|^2$ Ergodic average? $\langle |a_{\ell m}|^2 \rangle$

Coincide for full-sky, Gaussian distributed, noise-free map

Use "pseudo-
$$C_{\ell}$$
": $\hat{D}_{\ell} = \frac{1}{m} \sum_{m} |d_{\ell m}|^2 \quad d_{\ell m} = \sum_{p} d(\hat{x}_p) Y_{\ell m}(\hat{x}_p)$

- this combination only appears in likelihood function in the limit of full sky and uniform noise
- w/ some sort of apodization/weighting $\langle M_{\ell\ell'} \hat{D}_{\ell} + N_{\ell} \rangle = C_{\ell}$
- frequentist linear reweighting/debiasing

The (more realistic) CMB

Cannot (computationally) afford idealogical purity

- Y_{lm} are no longer good eigenmodes in the presence of noise and mask
 - KL (aka SN-eigenmode) is general solution, but bespoke (and very expensive)
- Use (MASTER-like) frequentist algorithms and interpret results as if they are Bayesian
 - i.e., assume asymptotic limit, and analogies with full-sky uniform-noise case which has numerical agreement between MLE and frequentist mean (sufficient statistics)

Component separation

- priors motivate inference and algorithms
 - physical information about components
 - mathematical classification of foreground-signal properties the sphere
 - e.g., use of (various species of) spherical wavelets

Model residual foreground contamination as an isotropic [200 Gaussian] field with known (or

parameterised) spectral shape

-40

Figure 13. Foreground model over the full range of HFI cosmological frequency combinations. The upper panel in each plot shows the residual between the measured power spectrum and the 'best-fit' primary CMB power spectrum, i.e., the unresolved foreground residual for each frequency combination. The lower panels show the residuals after removing the best-fit foreground model. The lines in the upper panels show the various foreground components. Major foreground components are shown by the solid lines, colour coded as follows: total foreground spectrum (red); Poisson point sources (orange); CIB (blue); thermal SZ (green). Minor foreground components are shown by the dotted lines: kinetic SZ (green); tSZ X CIB cross correlation (purple). The 100 × 143 and 100×217 GHz spectra are not used in the CamSpec likelihood. Here we have assumed $r_{100 \times 143}^{PS} = 1$ and $r_{100 \times 217}^{PS} = 1$.

Figure 12. Marginal posterior distributions for the six cosmological (top two rows) and eleven nuisance parameters (lower four rows) estimated with the CamSpec likelihood.

Spectra and likelihoods

• Cosmologists don't (shouldn't) actually care about C_{ℓ} .

- What we really want is a good way to compress the likelihood P(cosmology | data) BOND, JAFFE, & KNOX
- $P(d|\theta) = P(d|C_{\ell}[\theta])$
 - In general, complicated O(N³) fn of the data, but there are various ansatze

Expected errors

- Estimating the error (variance^{1/2}) on a variance (C_{ℓ}) • $\langle \delta C_{\ell} \delta C_{\ell} \rangle = \langle a_{\ell m} a_{\ell m} a_{\ell m} a_{\ell m} \rangle \cdot \langle a_{\ell m} a_{\ell m} \rangle \langle a_{\ell m} a_{\ell m} \rangle$
 - Wick's theorem: $\langle a^4 \rangle = 3 \langle a^2 \rangle^2$

ICIC

CMB case: Knox 95, Hobson & Magueijo 96
 need to account for (2l +1)f_{sky} measurements of each l

Bandpowers: bin in ℓ (weighted for specific C_{ℓ} shape) to reduce errors and decrease covariance

Kesults: power spectrum

Planck errors

Error band: cosmic variance estimate error bars: cosmic + noise variance

ICIC

Polarization: Physics

Ionized plasma + quadrupole radiation field:

■ Thomson scattering ⇒ [linearly] polarized emission

Unlike intensity, only generated when ionization fraction, 0<x<1 (i.e., during transition)</p>

- Scalar perturbations: traces ~gradient of velocity
 - same initial conditions as temperature and density fluctuations
- Tensor perturbations: independent of density fluctuations
 - +,× patterns of quadrupoles (impossible to form via linear scalar perturbations)
 - at last-scattering, from primordial background of gravitational radiation, predicted by inflation (cf. Senatore's lectures)

Polarization: E/B

2-d (headless) vector field on a sphere
 Spin-2/tensor spherical harmonics
 grad/scalar/E + curl/pseudoscalar/B patterns

- NB. From polarization pattern ⇒ E/B decomposition requires integration (non-local) or differentiation (noisy)
 - Lewis et al; Bunn et al; Smith & Zaldarriaga; Grain et al; Bowyer & AJ; ...
 - (data analysis problems)

Seljak & Zaldarriaga

B modes ⇒ gravitational waves?

- Everything generates
 E modes -5

If we can rule out lensing, foregrounds and instrumental effects, B modes are signature of gravitational radiation in the early Universe

Polarization: math

- Scalar and tensor modes are isotropic, paritysymmetric fields on the sky.
- T is a scalar, E is the "gradient" of a scalar, B is the "curl" of a pseudoscalar

$$\begin{split} Q(\hat{n}) &= -\frac{1}{2} \sum_{lm} \left(a_{lm}^{E} \left[{}_{2}Y_{lm}(\hat{n}) + {}_{-2}Y_{lm}(\hat{n}) \right] + i a_{lm}^{B} \left[{}_{2}Y_{lm}(\hat{n}) - {}_{-2}Y_{lm}(\hat{n}) \right] \right) \\ U(\hat{n}) &= -\frac{1}{2} \sum_{lm} \left(a_{lm}^{B} \left[{}_{2}Y_{lm}(\hat{n}) + {}_{-2}Y_{lm}(\hat{n}) \right] + i a_{lm}^{E} \left[{}_{2}Y_{lm}(\hat{n}) - {}_{-2}Y_{lm}(\hat{n}) \right] \right) \\ e(\hat{n}) &= \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} a_{lm}^{E} Y_{lm}(\hat{n}) \quad b(\hat{n}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} a_{lm}^{B} Y_{lm}(\hat{n}) \\ \nabla^{4}e &= -\frac{1}{2} \left[\bar{\eth}^{2}(Q+iU) + \eth^{2}(Q-iU) \right] \quad \nabla^{4}b = \frac{i}{2} \left[\bar{\eth}^{2}(Q+iU) - \eth^{2}(Q-iU) \right] \end{split}$$

expect (EB)=(TB)=0
try to measure (TT), (BB), (EE), (TE)

The Polarization of the CMB

Anisotropic radiation field at last scattering \rightarrow polarization "Grad" or E mode **Breaks** degeneracies New parameters: reionization "Curl" or B sensitive to gravity waves "Smoking gun" of inflation? Very low amplitude Need better handle on systematics, and... Polarized foregrounds?

Polarization: data

Formally the same problem

$$\Box d_p \Longrightarrow (i,q,u)_p = d_{i,p} = d_q \qquad \langle d_q d_{q'} \rangle = N_{qq'} + S_{qq'}$$

• Correlation matrix become combination of $\langle TT \rangle$, $\langle TE \rangle$, $\langle EE \rangle$, $\langle BB \rangle$ (other combinations usu. vanish)

- Sphere enters in this calculation through $\pm 2Y_{\ell m}$, P_{ℓ} , &c
- □ Sometimes useful to actually transform from $Q/U \rightarrow E/B$
 - "trivial" on full (pixelized) QU sky with no noise.
 - realistic case more complicated (e.g., Smith & Zaldariagga)
 - harmonic analyses (e.g., Kim 2010)
 - real-space finite differences (Bowyer, AHJ, Novikov 2011)
 - still have to "undo" Laplacian to get to true e/b scalars
 inherently nonlocal

Polarization: E/B Separation

Polarization: State of the Art

non-Gaussianity: f_{NL}

- Heuristically $\phi = \phi_G + f_{NL}(\phi_G^2 \langle \phi_G^2 \rangle)$ for a Gaussian ϕ_G (e.g., multi-field inflation)
 - This is the (spatially) local model for non-Gaussianity
 Induces specific 3-d correlations
 - $\langle \phi \phi \phi \rangle \sim 3f_{\rm NL} \left(\langle \phi_G \phi_G \phi_G \phi_G \phi_G \rangle \langle \phi_G \phi_G \rangle \langle \phi_G \phi_G \rangle \right) + O(f_{\rm NL}^2)$ $\sim 6f_{\rm NL} \langle \phi_G \phi_G \rangle \langle \phi_G \phi_G \rangle + O(f_{\rm NL}^2)$
 - and hence 2-d correlations in the CMB
 - Corresponds to Fourier bispectrum B(k₁, k₂, k₃) which peaks in squeezed case k₁≪k₂≃k₃
 - modulate small-scale structure by large-scale modes
 - cf. galaxy bias
 - More generally, consider other shapes (e.g., equilateral) motivated by specific theories

non-Gaussianity on the sphere

Consider the "connected" npoint functions

 $\langle a_{\ell_1 m_1} a_{\ell_2 m_2} \cdots a_{\ell_n m_n} \rangle_c$ isotropy gives a constraint on the $\{\ell_i m_i\}$

- equivalent to Euclidean $k_1+k_2+\cdots+k_n=0$
- (seen in vanishing of 3-j, 6-j, Wigner D, ... functions)

Planck 2013 XXIV

If the CMB sky is rotationally invariant, the angular bispectrum can be factorized as follows:

$$\langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} \rangle = \mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} b_{\ell_1 \ell_2 \ell_3} , \qquad (24)$$

where $b_{\ell_1\ell_2\ell_3}$ is the so called *reduced bispectrum*, and $\mathcal{G}_{m_1m_2m_3}^{\ell_1\ell_2\ell_3}$ is the Gaunt integral, defined as:

$$\mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} \equiv \int Y_{\ell_1 m_1}(\hat{\boldsymbol{n}}) Y_{\ell_2 m_2}(\hat{\boldsymbol{n}}) Y_{\ell_3 m_3}(\hat{\boldsymbol{n}}) d^2 \hat{\boldsymbol{n}} = h_{\ell_1 \ell_2 \ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix}, \qquad (25)$$

where $h_{\ell_1 \ell_2 \ell_3}$ is a geometrical factor,

$$h_{\ell_1\ell_2\ell_3} = \sqrt{\frac{(2\ell_1+1)(2\ell_2+1)(2\ell_3+1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (26)

• Spherical manifold also enters in choice of an estimator for the n-point function (or f_{NL}) — usually start from estimates of harmonic coefficients $a_{\ell m}$

Non-Gaussianity

Conclusions

- The CMB lives on the sphere
- Simple description of signal: C_{ℓ}
- Noise, masking, etc break the symmetries
- Brute force statistical approaches

 (optimal, Bayesian) don't really take
 advantage of the available mathematics
 - But too expensive in practice (on large datasets)
- realistic (approximate) methods (pseudo-spectra, component separation, E/B separation, ...) have all taken advantage of the spherical signal

