DATA STRUCTURES FOR IRRADIANCE ON THE SPHERE

ARTEFACTS AND REAL-TIME UPDATES

Dr Chris Doran Geomerics / ARM

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Games today

- Grand Theft Auto 5 (2013)
- 15.5 GB of data on 2 DVDs
- Team size > 1,000 people (!)
- Majority of these are artists
- Vast majority of the data is content (not code)
- GTA 5 made \$1bn in 48 hours (PS3 and Xbox 360 only)

Our target platforms

How do games get made?

- For a 'AAA' game there are three main ingredients:
- 1. A large capital investment
- 2. A huge number of artists
- 3. A game engine
- This is a huge investment in technology

The engine

- Content pre-processor
- Content management
- Level editor
- Rendering
- Animation
- Physics
- Lighting baker
- Al
- Scripting

Video

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Simplification 1 – RGB Colour

- Restrict to three discrete colour channels
 - Don't work with entire spectrum too hard!
- Motivated by physiology of human eye
 - Three types of cone cells: L, M, S [*]

Drawbacks

- Hard to model some physical effects directly
 - Rainbows, polarisation, fluorescence, redshift
- Cannot reproduce all colours
 - Typically displays have this problem too

Simplification 2 – Triangles

Simplification 3 – Rasterisation

- Single ray per pixel (more with MSAA)
- Give up depth-of-field blur as emergent property
- Add hardware for z-buffer, triangles ③

Simplification 4 – BRDF

- Assume surfaces infinitesimally thin
- Disregard transmission
- Properties capture by a Bidirectional Reflectance Distribution Function for each surface
- Incoming light direction ω_{i}
- Outgoing light direction $\omega_{\rm r}$
- BRDF $f(\omega_i, \omega_r)$ is the ratio of the incoming light along ω_i which is reflected along ω_r

ω

ω

The Rendering Equation

Simplification 5 – Light Maps

- Simplest approach: use offline renderer
- Save result into a texture ("light map")
- Index results with UV coordinates per vertex
- Look up results in shader very fast
- Usually static Enlighten computes these dynamically

Simplification 6 – Split BRDF

- BRDF = diffuse + specular
- Special case the specular term
- Bounce round the diffuse term Radiosity
- This is a Lambertian diffuse surface
- Johann Heinrich Lambert, who was first to:
 - Prove pi is irrational
 - Use the term "albedo" in photometry
 - Prove formula for area of hyperbolic triangle

Albedo

$$L(\omega_r) = E(\omega_r) + \int_{\Omega} \frac{\alpha}{\pi} L_i(\omega_i)(\omega_i \cdot n) d\Omega_i$$

Simplification 7 – cube map specular

- Store a view of the scene in a cube map
- Efficient directional look-up
- Use mip-maps to blur based on roughness

Global illumination – example

Global illumination – direct only

Global illumination radiosity pass

Global illumination – specular pass

Global illumination – final image

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Dynamic objects

- Small dynamic objects are lit with 'light probes'
 - Capture the light field volumetrically
 - Relight geometry with arbitrary position/orientation
 - Use 'spherical harmonics'

Some notation

- In graphics we rarely go beyond *l*=2
- Don't want to mess around with complex numbers
- Don't bother with factors of $\sqrt{\pi}$
- Normalise once
- Think of first three terms as scalar, vector, symmetric tensor

$$f(\boldsymbol{\omega}) = f_0 + \boldsymbol{f} \cdot \boldsymbol{\omega} + \boldsymbol{\omega}^t F \boldsymbol{\omega}$$

- In some cases makes sense to combine all 9 coefficients into a 3x3 matrix
 - Efficient for rotation

Useful result

- Ramamoorthi + Hanrahan 2001 (JOSA/A)
- At a probe, suppose the incoming light is given by

$$l(\boldsymbol{\omega}) = l_0 + \boldsymbol{l} \cdot \boldsymbol{\omega} + \boldsymbol{\omega}^t L \boldsymbol{\omega} + \cdots$$

• The irradiance in a direction *n* is given by

$$I(\boldsymbol{n}) = \int_{H} \frac{d\omega}{\pi} \boldsymbol{\omega} \cdot \boldsymbol{n} L(\boldsymbol{\omega})$$

Which gives

$$I(\boldsymbol{n}) = l_0 + \frac{2}{3}\boldsymbol{l}\cdot\boldsymbol{\omega} + \frac{1}{4}\boldsymbol{n}^t L\boldsymbol{n} + \cdots$$

Useful result

$$l(\boldsymbol{\omega}) = l_0 + \boldsymbol{l} \cdot \boldsymbol{\omega} + \boldsymbol{\omega}^t L \boldsymbol{\omega} + \cdots$$
$$I(\boldsymbol{n}) = l_0 + \frac{2}{3} \boldsymbol{l} \cdot \boldsymbol{\omega} + \frac{1}{4} \boldsymbol{n}^t L \boldsymbol{n} + \cdots$$

- All higher-order odd terms vanish from irradiance
- Coefficients of the even terms fall off as 1/*l*
- Used to justify terminating at *l*=2
- On last generation consoles we just kept the scalar and vector terms!

- Low order harmonics produce some unpleasant artefacts
- Pool of light on floor from a window produces a highly directional input
- In this case the SH reconstruction can easily go negative
- In sampling terms

- Not clear that going to l=2 will resolve all problems
- May just introduce unpleasant ringing terms
- On latest games have a lot of objects lit with probes
 - Logic to determine which probes to compute is complex
 - Simpler to just update a voxel grid
 - Interpolate on the GPU
- End up computing quite a dense grid
 - 9 coefficients per colour channel = 27 in total
- Starting to look at multi-resolution techniques
 - Fill in the grid when data slowly changing
- But can we do better?

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Surface Irradiance

- In Enlighten we compute the irradiance on surfaces at a low resolution
 - Fill in detail by upsampling
- Fine for smooth surfaces
- Need to consider geometric detail
 - Small artefacts on surface
 - Normal maps
- So we also compute an average direction of incoming light
- Do this under cosine distribution for simplicity
- Looking for a better model

Test scene

Arches - Enlighten Real-Time Viewer	- 6 -
< Scene Precompute Baking Rendering Filter Lighting Demo Performance Post Processing CubeMap Dependencies Directional Irradiance Radiosity System Dependencies ProbeSet Dependencies	
Selected radiosity pixels: 1/6 Green Albedo Irradiance Model #1	
Cube map size: Environment resolution: • 64 0.2 • 128 4 • 256 6 • 512 16	
Reload Save Clear Update Models	
R Compare models	
Ground truth HL Lum HL R0B Model #1 Model #2	
Show Visualisation:	1
• Output Sphere	
Show plane Coad normal map	1
	M
Normal map UV scale:	AU,
	VI
Normal map routiplier:	
Ground truth model parameters:	
k Use clustered input	
Model 1 parameters:	
Param 1: 1.500	
Param 2: 0100	
Albedo scale: 1.00	
Param 1: 0	

Test scene

Arches - Enlighten Real-Time Viewer			
Scene Precompute Baking Rendering Filter Lighting Demo Performance Post Processing C	cubeMap Dependencies Directional Irradiance Radiosity System Dependencies Pro	beSet Dependencies	
Selected radiosity pixels: 1/8 • Green • Abedo Irradiance • Bit Lum HL Lum Hradiance Cube map size: Environment resolution: • 64 256 • 8 • 512 16 Reload Save Clear Update Models			16
Compare models Ground truth HL RGB HL RGB Model #1 Model #2			
Pixel:			
Show: Visualisation:			
Output Sphere			
Black background Show plane			
Scale:			
1.0	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW		ANA
Normal map UV scale:			
Normal map multiplier:			
1.0			
Ground truth model parameters:			
X Use clustered input			
Parameters:			
Param 2: 0.100			
Albedo scale: 1.00		1 A	
Param 1:			

Examples

- Trying to deal with four types of geometry
- Curved surfaces

- 1
- Extrusions
- Intrusions
 - Normal maps

Can reconstruct a plausible scalar + vector term:

$$I(\boldsymbol{\omega}) = L\frac{1}{2}(1 + \cos\theta) + (\boldsymbol{d} \wedge \boldsymbol{nn}) \cdot \boldsymbol{\omega}$$

But only so much you can do with a scalar and a vector

- Raise a half-Lambert term to a power?
- Have to model the back reflections
- Have surface albedo information here
- Can try half Lambert in back direction

$$I'(\boldsymbol{\omega}) = L\alpha \frac{1}{2}(1 - \cos\theta)$$

- Given the measured data we can reconstruct a 'best fit' SH series (up to 2 usually)
- Often collect the directional information at lower resolution
- Want to collect directional data for separate light channels
- Directional data is very susceptible to quantization error
 - See this over a smooth curved surface
- Reconstruction will be done on the GPU in a shader
 - Has to be very simple and hardware friendly
- Can we use the fact the data is hemispherical more intelligently?

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Summary: wish list

- Want a spherical basis with
 - Small number of parameters
 - Smooth
 - Local support
 - Positive (functions are all positive)
 - Good rotation properties
 - Fast projection and reconstruction
 - Good interpolation and multi-resolution properties
- Want something similar for the hemisphere
- Also looking for compact representations of BRDF
 - Beyond Lambertian reflection
 - Blinn, Catmull Clark …

Questions

- chris.doran@geomerics.com
- chris.doran@arm.com

