DATA STRUCTURES FOR IRRADIANCE ON THE SPHERE

 ARTEFACTS AND REAL-TIME UPDATESDr Chris Doran

Geomerics / ARM

Outline

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Games today

- Grand Theft Auto 5 (2013)
- 15.5 GB of data on 2 DVDs
- Team size > 1,000 people (!)
- Majority of these are artists
- Vast majority of the data is content (not code)
- GTA 5 made $\$ 1$ bn in 48 hours (PS3 and Xbox 360 only)

Our target platforms

How do games get made?

- For a 'AAA' game there are three main ingredients:

1. A large capital investment
2. A huge number of artists
3. A game engine

- This is a huge investment in technology

The engine

- Content pre-processor
- Content management
- Level editor
- Rendering
- Animation
- Physics
- Lighting baker
- AI
- Scripting

Video

Outine

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Simplification 1 - RGB Colour

- Restrict to three discrete colour channels
- Don't work with entire spectrum - too hard!
- Motivated by physiology of human eye
- Three types of cone cells: L, M, S [*]

Drawbacks

- Hard to model some physical effects directly
- Rainbows, polarisation, fluorescence, redshift
- Cannot reproduce all colours
- Typically displays have this problem too

Simplification 2 - Triangles

Simplification 3 - Rasterisation

- Single ray per pixel (more with MSAA)
- Give up depth-of-field blur as emergent property
- Add hardware for z-buffer, triangles ©

	-	.		

Simplification 4 - BRDF

- Assume surfaces infinitesimally thin
- Disregard transmission
- Properties capture by a Bidirectional Reflectance Distribution Function for each surface
- Incoming light direction ω_{i}
- Outgoing light direction ω_{r}
- BRDF $f\left(\omega_{\mathrm{i}}, \omega_{\mathrm{r}}\right)$ is the ratio of the incoming light along ω_{i} which is reflected along ω_{r}

The Rendering Equation

$$
L\left(\omega_{\uparrow}\right)=E\left(\omega_{r}\right)+\int_{\Omega} f\left(\omega_{i}, \omega_{r}\right) L_{i}\left(\omega_{i}\right)\left(\omega_{i} \cdot n\right) d \Omega_{i}
$$

 outgoing light

Simplification 5 - Light Maps

- Simplest approach: use offline renderer
- Save result into a texture ("light map")
- Index results with UV coordinates per vertex
- Look up results in shader - very fast
- Usually static - Enlighten computes these dynamically

Simplification 6 - Split BRDF

- BRDF = diffuse + specular
- Special case the specular term
- Bounce round the diffuse term - Radiosity
- This is a Lambertian diffuse surface
- Johann Heinrich Lambert, who was first to:
- Prove pi is irrational

- Use the term "albedo" in photometry
- Prove formula for area of hyperbolic triangle

$$
L\left(\omega_{r}\right)=E\left(\omega_{r}\right)+\int_{\Omega} \frac{\alpha}{\pi} L_{i}\left(\omega_{i}\right)\left(\omega_{i} \cdot n\right) d \Omega_{i}
$$

Simplification 7 - cube map specular

- Store a view of the scene in a cube map
- Efficient directional look-up
- Use mip-maps to blur based on roughness

Global illumination - example

Global illumination - direct only

Global illumination radiosity pass

Global illumination - specular pass

Global illumination - final image

Outine

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Dynamic objects

- Small dynamic objects are lit with 'light probes’
- Capture the light field volumetrically
- Relight geometry with arbitrary position/orientation
- Use 'spherical harmonics'

EnLIGHTEN

Some notation

- In graphics we rarely go beyond $l=2$
- Don't want to mess around with complex numbers
- Don't bother with factors of $\sqrt{\pi}$
- Normalise once
- Think of first three terms as scalar, vector, symmetric tensor

$$
f(\boldsymbol{\omega})=f_{0}+\boldsymbol{f} \cdot \boldsymbol{\omega}+\boldsymbol{\omega}^{t} F \boldsymbol{\omega}
$$

- In some cases makes sense to combine all 9 coefficients into a 3×3 matrix
- Efficient for rotation

Useful result

- Ramamoorthi + Hanrahan 2001 (JOSA/A)
- At a probe, suppose the incoming light is given by

$$
l(\boldsymbol{\omega})=l_{0}+\boldsymbol{l} \cdot \boldsymbol{\omega}+\boldsymbol{\omega}^{t} L \boldsymbol{\omega}+\cdots
$$

- The irradiance in a direction n is given by

$$
I(\boldsymbol{n})=\int_{H} \frac{d \omega}{\pi} \boldsymbol{\omega} \cdot \boldsymbol{n} L(\boldsymbol{\omega})
$$

- Which gives

$$
I(\boldsymbol{n})=l_{0}+\frac{2}{3} \boldsymbol{l} \cdot \boldsymbol{\omega}+\frac{1}{4} \boldsymbol{n}^{t} L \boldsymbol{n}+\cdots
$$

Useful result

$$
\begin{aligned}
l(\boldsymbol{\omega}) & =l_{0}+\boldsymbol{l} \cdot \boldsymbol{\omega}+\boldsymbol{\omega}^{t} L \boldsymbol{\omega}+\cdots \\
I(\boldsymbol{n}) & =l_{0}+\frac{2}{3} \boldsymbol{l} \cdot \boldsymbol{\omega}+\frac{1}{4} \boldsymbol{n}^{t} L \boldsymbol{n}+\cdots
\end{aligned}
$$

- All higher-order odd terms vanish from irradiance
- Coefficients of the even terms fall off as $1 / l$
- Used to justify terminating at $l=2$
- On last generation consoles we just kept the scalar and vector terms!

Problems

- Low order harmonics produce some unpleasant artefacts
- Pool of light on floor from a window produces a highly directional input
- In this case the SH reconstruction can easily go negative
- In sampling terms

$$
\boldsymbol{l}=\frac{3}{n} \sum_{a} l^{a} \boldsymbol{\omega}^{a}
$$

- If one direction dominates then l is larger than scalar term

Problems

- Not clear that going to $l=2$ will resolve all problems
- May just introduce unpleasant ringing terms
- On latest games have a lot of objects lit with probes
- Logic to determine which probes to compute is complex
- Simpler to just update a voxel grid
- Interpolate on the GPU
- End up computing quite a dense grid
- 9 coefficients per colour channel $=27$ in total
- Starting to look at multi-resolution techniques
- Fill in the grid when data slowly changing
- But can we do better?

Outine

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Surface Irradiance

- In Enlighten we compute the irradiance on surfaces at a low resolution
- Fill in detail by upsampling
- Fine for smooth surfaces
- Need to consider geometric detail
- Small artefacts on surface
- Normal maps
- So we also compute an average direction of incoming light
- Do this under cosine distribution for simplicity
- Looking for a better model

Test scene

HLL Lum
HL RGB
Model \#1
Pixel:
Show: Visualisation
$\begin{array}{ll}\text { Show: } & \text { Visualisation: } \\ \text { Input } & \text { O Cube map cros } \\ \text { In }\end{array}$
$\begin{array}{ll}\text { Input } & \text { O Cube ma } \\ \text { - Output } & \text { Sphere }\end{array}$
\square Black backgrounc
\square Show plane \square nad nowal man
\square
10

1.0
Normal
0

0
1.0
Ground truth model parameters
\mathbf{x} Use clustered input
Model 1 parameters
Param 1: 1.500
Param 2: 0.100

| Paiamin 2. 0.100 |
| :--- | :--- |
| Albedo scale: 1.00 |

Param 1: 0

Test scene

Examples

Problems

- Trying to deal with four types of geometry
- Curved surfaces
- Extrusions

- Intrusions
- Normal maps

Problems

- Can reconstruct a plausible scalar + vector term:

$$
I(\boldsymbol{\omega})=L \frac{1}{2}(1+\cos \theta)+(\boldsymbol{d} \wedge \boldsymbol{n} \boldsymbol{n}) \cdot \boldsymbol{\omega}
$$

- But only so much you can do with a scalar and a vector
- Raise a half-Lambert term to a power?
- Have to model the back reflections
- Have surface albedo information here
- Can try half Lambert in back direction

$$
I^{\prime}(\omega)=L \alpha \frac{1}{2}(1-\cos \theta)
$$

Problems

- Given the measured data we can reconstruct a 'best fit' SH series (up to 2 usually)
- Often collect the directional information at lower resolution
- Want to collect directional data for separate light channels
- Directional data is very susceptible to quantization error
- See this over a smooth curved surface
- Reconstruction will be done on the GPU in a shader
- Has to be very simple and hardware friendly
- Can we use the fact the data is hemispherical more intelligently?

Outine

- The games industry
- Introduction to game graphics
- Volume re-lighting
- Surface irradiance
- Summary

Summary: wish list

- Want a spherical basis with
- Small number of parameters
- Smooth
- Local support
- Positive (functions are all positive)
- Good rotation properties
- Fast projection and reconstruction
- Good interpolation and multi-resolution properties
- Want something similar for the hemisphere
- Also looking for compact representations of BRDF
- Beyond Lambertian reflection
- Blinn, Catmull Clark ...

Questions

- chris.doran@geomerics.com
- chris.doran@arm.com

