
Geometric Methods for Spherical
Data Analysis

Domenico Marinucci
Department of Mathematics
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Geometry of Gaussian Fields

Let M be a general Riemannian manifold. In particular,
for CMB we can think of M as a sphere S2.
The basic set of random geometrical objects are R
valued random field f(x) defined on M and its excursion
sets A

Au(f,M) = {x ∈ M : f(x) ≥ u}
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Lipschitz-Killing Curvatures

Lipschitz-Killing Curvatures (LKCs) (Minkowski
Functionals (MFs)), can be defined using a tube
formula:

µ(Tube(M, ρ)) =

n=dim(M)∑

j=0

ωjLn−j(M)ρj

where Tube(M, ρ) = {t ∈ RN : dist(M,x) ≤ ρ} is a tube
of radius ρ bounding M; µ is Lebesgue measure; and wj

is the volume of a unit ball in Rj.
LKCs depend on the Riemannian metric, and are a
measure of the k-dimensional size of the Riemannian
manifold M .
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Lipchitz-Killing Curvatures II

In particular, in two dimensions
L0(Au(f)) is the genus or the Euler-Poincarè
characteristic (minima+maxima-saddles) of the
excursion regions, i.e. the third Minkowski functional (2
for the sphere).
L1(Au(f)) is half the boundary length of the excursion
regions, e.g. the second Minkowski functional (0 for the
sphere).
L2(Au(f)) is the area of the excursion regions, e.g. the
first Minkowski functional (4π for the sphere).
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Gaussian Kinematic Formula (GKF)

Due to Adler and Taylor, it allows to evaluate expected
values of Lipshitz-Killing curvatures (LKCs)/Minkowski
Functionals (MFs) for excursion regions under very
general circumstances.

ELf
i (Au(f,M)) =

dimM−i∑

k=0

[
i+ k

k

]
Lf
i+k(M)Mk([u,∞))

[
i+ k

k

]
=

(
i+ k

k

)
ωi+k

ωkωi
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Gaussian MF

Mk is given by

Mγk
j ([u,∞)) = (2π)−1/2Hj−1(u)e

−u2/2.

where Hj denotes the Hermite polynomials: H0(u) = 1,
H1(u) = 2u, H2(u) = 4u2 − 1, H3(u) = 8u3 − 12u

Beware: Gaussian MF are not the MF of a Gaussian field!
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Advantages of GKF

Splits the role of the correlation structure from the
threshold level.
The Lf

k(M) part depends only metric properties, and
hence on correlation; if the metric is scaled by λ, Lk(M)

scales by λk.
Allows to cover easily masked data
Allows to cover important forms of nonGaussianity
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Spherical Gaussian fields

Recall that

Tℓ(x) =
ℓ∑

m=−ℓ

aℓmYℓm(x) and βj(x) =
∑

ℓ

b(
ℓ

Bj )Tℓ(x) ,

and normalizing

T̃ℓ(x) =
Tℓ(x)√
2ℓ+1
4π Cℓ

, and β̃j(x) =
βj(x)√∑

ℓ b
2( ℓ

Bj )
(2ℓ+1)
4π Cℓ

.

Of course

T (x) =
∞∑

ℓ=1

Tℓ(x) =
∞∑

j=1

βj(x)
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Needlets Fields

Needlet component fields are defined by

βj(x) =
∑

ℓ

b(
ℓ

Bj )Tℓ(x) , j = 1, 2, 3...

where the needlet kernel is given by

Ψj(⟨x, y⟩) : =
∑

ℓ

b(
ℓ

Bj )
2ℓ+ 1

4π
Pℓ(⟨x, y⟩)
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The function b(.)

1. b2(.) has support in [ 1B , B], and hence b( ℓ
Bj ) has support

in ℓ ∈ [Bj−1, Bj+1]

2. the function b(.) is infinitely differentiable in (0,∞).

3. we have
∞∑

j=1

b2(
ℓ

Bj ) ≡ 1 for all ℓ > B. (1)

(partitions of unity)
We need B > 1, for instance B = 2

Geometric Methods for Spherical Data Analysis – p. 11/37



THE SHAPE OF b( .
Bj )

Figure 1: Partition of unity
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Localization property

Localization property
For any M there exists a constant cM s.t.,for every ξ ∈ S2 :

|Ψj(x, y)| ≤
cMBj

(1 + Bj arccos⟨x, y)M
·

(Quasi-Exponential localization) Recall that
arccos⟨x, y⟩ → d(x, y), geodesic distance on the sphere.
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THE ROLE OF j
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Figure 2: Needlets
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Needlets Fields

The component can hence be viewed as projections:

βj(x) =

∫

S2

Ψj(⟨x, y⟩)T (y)dy =
∑

ℓ

b(
ℓ

Bj )Tℓ(x)

Other approaches to spherical wavelets have been
developed by many other people in this meeting; similar
applications of GKF are possible.
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Asymptotic Uncorrelation

Under some regularity conditions on Cl, uncorrelation
inequality:

|Corr(βj(x), βj(y))| ≤
CM

(1 +Bjd(x, y))M
(2)

where d(x, y) = arccos(⟨x, y⟩).
The needlet fields at any finite distance are asymptotically
uncorrelated.
IMPORTANT NOTICE: this is NOT due to localization.
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GKF on the sphere

The scaling λ equals the derivative of the covariance
function at the origin; in the case of random spherical
harmonics and needlet fields it is given by:

λ =

⎧
⎪⎨

⎪⎩

√
ℓ(ℓ+1)

2 , if f(x) = Tℓ(x)√∑
ℓ b

2( ℓ
2s )Cℓ

2ℓ+1
4π

ℓ(ℓ+1)
2∑

ℓ b
2( ℓ

2s )Cℓ
2ℓ+1
4π

, if f(x) = βj(x)
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Applications of GKF in cosmology

Our interest here is to compute the expected values of
the LKCs (MFs) in harmonic and needlet space.
The advantages of implementing LKCs on needlet
space are:

Needlets enjoy very good localization in pixel space -
are minimally affected by masked regions, especially
at high-frequency j.

The double-localization properties of needlets (in
real and harmonic space) allow a precise
interpretation of any possible anomalies - offer a
scale-by-scale probe of asymmetries and relevant
features e.g. Cold Spot.
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LKCs for a Gaussian field

First LKC (e.g. Euler-Poincarè characteristic)

EL0(Au(f(x), S
2)) = 2 {1− Φ(u)}+ λ2

ue−u2/2

√
(2π)3

4π ;

Second LKC (e.g., half the boundary length)

EL1(Au(f(x), S
2)) = π × λe−u2/2 ;

Third LKC (e.g., area)

EL2(Au(f(x), S
2)) = 4π × {1− Φ(u)} .
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Quadratic case β2
j (x)

Goal: anisotropic fluctuations in the power spectrum.

First LKC (e.g. Euler-Poincarè characteristic)

EL0(Au(H2s(x), S
2))

= 4(1− Φ(
√
u+ 1)) + 4λ2

e−(u+1)/2

√
2π

√
u+ 1 ;

Second LKC (half the boundary length)

EL1(Au(H2s(x), S
2)) = 2πλe−(u+1)/2 ;

Third LKC (area)

EL2(Au(H2(x), S
2)) = 4π × 2(1− Φ(

√
u+ 1)) .
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Cubic case β3
j (x)

Useful to study local fluctuations in non-Gaussianity.

First LKC: Euler characteristic

EL0(Au(H3s(x), S
2)) = 2(1− Φ( 3

√
u)) + 2λ2

e−( 3
√
u)2/2

√
2π

3
√
u ;

Second LKC: (half) boundary length

EL1(Au(H3s(x), S
2)) = πλe−( 3

√
u)2/2 ;

Third LKC: Area

EL2(Au(H3s(x), S
2)) = 4π(1− Φ( 3

√
u)) .
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Masked case,M := S2\G

Euler characteristic

EL0(Au(f(x),M)) = {1− Φ(u)}L0(M)

+
π

2
λs

1

2π
e−u2/2L1(M) + λ2

ue−u2/2

√
(2π)3

L2(M) ;

half the boundary length

EL1(Au(f(x),M)) = 2 {1− Φ(u)}L1(M)+
π

2
λρ1(u)L2(M) ;

the area

EL2(Au(f(x), S
2)) = {1− Φ(u)}L2(S

2).
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Computing LKCs from a (CMB) map

Harmonic space - obtain Tℓ(x) maps; normalize each
map by the expected RMS; power transform normalized
Tℓ maps to obtain NG maps.
Needlet space - apply the standard needlet filter to the
spherical harmonic coefficients; we used B=1.5.
The area functional is computed by finding the ratio of
Healpix pixels above a certain temperature threshold.
The length and genus functionals are computed by
using the method described in Eriksen et. al. 2004
paper.
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Masked algorithm

Fix Cℓ, Lmax = 10, and generate Gaussian maps
Fix some threshold values ui, evaluate LKC by Monte
Carlo
Use least square regression to estimate Li(S2\G),
i = 0, 1, 2

Use these estimates obtained in point 3 as an input for
GKF
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Asymmetries in the angular power spectrum

Figure 3: Angular power spectrum estimator
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Nonlocal transform

As argued earlier

E
{
β2
j (x)

}
=
∑

ℓ

b(
ℓ

Bj )
2ℓ+ 1

4π
Cℓ ,

providing a natural local estimator for the angular power
spectrum. Let us now introduce the smoothed sequences

gj;2(z) :=

∫

S2

K(⟨z, x⟩)β2
j (x)dx .
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Nonlinear transform

For instance, (hemispherical asymmetry)

gj;2(N) :=

∫

S2

K(⟨N, x⟩)β2
j (x)dx , gj;2(S) :=

∫

S2

K(⟨S, x⟩)β2
j (x)dx ,

where K(⟨a, .⟩) := I[0,π2 ](⟨a, .⟩), and N,S denote the North
and South Poles (Hansen et al. (2009), Pietrobon et al.
(2009), Bennett (2012), Planck anisotropy papers). More
generally

gj;q(z) :=

∫

S2

K(⟨z, x⟩)Hq(βj(x))dx , (3)
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Nonlocal transforms of Gaussian fields

We introduce, for every x ∈ S2

gj;q(x) :=

∫

S2

K(⟨x, y⟩)Hq(β̃j(y))dy ; (4)

where we assume:

K(⟨x, y⟩) =
LK∑

ℓ

2ℓ+ 1

4π
κ(ℓ)Pℓ(⟨x, y⟩) , some LK ∈ N .

Motivations: local estimates of angular power spectrum,
bispectrum.
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LKCs at high j

Euler-Poincarè characteristic

EL0(Au(f(x), S
2)) = 2 {1− Φ(u)}+ λ2j;2

ue−u2/2

√
(2π)3

4π ;

Boundary length

EL1(Au(f(x), S
2)) = π × λj;2e

−u2/2 ;

Area of the excursion region

EL2(Au(f(x), S
2)) = 4π × {1− Φ(u)} .

Geometric Methods for Spherical Data Analysis – p. 29/37



Nonlinear parameters

In the previous slides, we have used the constants:

λj;q =

∑L
ℓ=1

2ℓ+1
4π Cℓ;j,qP

′
ℓ(1)∑L

ℓ=1
2ℓ+1
4π Cℓ;j,q

. (5)

and

Cℓ;j,2 = 2κ2(ℓ)
∑

ℓ1ℓ2

b2(
ℓ1
Bj )b

2(
ℓ2
Bj )

(2ℓ1 + 1)(2ℓ2 + 1)

4π
Cℓ1Cℓ2

(
ℓ ℓ1 ℓ2
0 0 0

)

with obvious generalizations to q > 2
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Euler-Poincaré Heuristics
EP characteristic = connected components - holes
For u large, only one connected component
Expected value = probability to go above u
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Excursion probabilities

We have that
∣∣∣P
{
sup
x∈M

f(x) ≥ u

}
−E {L0(Au(f ;M))}

∣∣∣ < O

(
exp

(
−αu2

2σ2

))
,

(6)
where L0(Au(f ;M)) is, as defined earlier, the
Euler-Poincaré characteristic of the excursion set
Au(f ;M) = {x ∈ M : f(x) ≥ u}, and α > 1 is a constant,
which depends on the field f and can be determined (see
Theorem 14.3.3 of RFG).
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Excursion probabilities

(M and Vadlamani, 2013) For u large enough

lim sup
j→∞

∣∣∣∣Pr
{
sup
x∈S2

g̃j;q(x) > u

}
− {2(1− Φ(u)) + 2uφ(u)λj;q}

∣∣∣∣
(7)

≤ exp

(
−αu2

2

)
, (8)

where g̃j;q(x) has been normalized to have unit variance,
φ(.),Φ(.) denote standard Gaussian density and distribution
function, α > 1 is some constant and the parameters λj;q
has been defined above.
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Some generalizations - Area

The GKF only refers to expected values - it is of interest to
have some results on variances and CLT as well. For the
third LKC, these results are simple (MW,2011,2014):

L2(Au(Tℓ(x), S
2))− EL2(Au(Tℓ(x), S

2))√
ℓ−1uφ(u)

→ N(0, 1)

Two remarkable features:
For the needlets, the variance decays faster (= O(ℓ−2))
"Berry cancellation" at u = 0.
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Some generalizations

For the EP characteristic, Cammarota, M and Wigman
(2014) have recently shown that

V arL0(Au(Tℓ(x), S
2)) =

ℓ3

4

e−u2

2π
[H3(u) +H1(u)]

2 +O(ℓ5/2) .
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Some generalizations

This expression looks "Gaussian kinematic" and shows that
after normalization the variance is O(ℓ−1); for the needlet
case, convergence to zero is faster, V ar = O(ℓ−2). The
result is a corollary of a more general statement concerning
the asymptotic convergence of maxima, minima and
saddles, in the high-frequency limit. It is also possible to
combine the statistics at different frequencies into a single
value - applications under way.
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Figure 4: Variance EP - analytic prediction
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