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Geometry of Gaussian Fields

f.o Let M be a general Riemannian manifold. In particular, T
for CMB we can think of M as a sphere S2.

# The basic set of random geometrical objects are R
valued random field f(x) defined on M and its excursion

sets A

Ay(f,M)={xe M : f(z) > u}
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Lipschitz-Killing Curvatures
-

# Lipschitz-Killing Curvatures (LKCs) (Minkowski
Functionals (MFs)), can be defined using a tube
formula:

n=dim(M)
w(Tube(M,p)) = > wily j(M)p]
j=0
where Tube(M, p) = {t € RN : dist(M,x) < p} is a tube
of radius p bounding M; 1. is Lebesgue measure; and w;
is the volume of a unit ball in R7.

# LKCs depend on the Riemannian metric, and are a
measure of the k-dimensional size of the Riemannian
manifold M.
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Lipchitz-Killing Curvatures 11

| n

n particular, in two dimensions

® Lo(Ay(f)) is the genus or the Euler-Poincaré
characteristic (minima+maxima-saddles) of the
excursion regions, i.e. the third Minkowski functional (2
for the sphere).

® L1(Au(f)) is half the boundary length of the excursion
regions, e.g. the second Minkowski functional (O for the
sphere).

® Lo(Ay(f)) is the area of the excursion regions, e.g. the
first Minkowski functional (47 for the sphere).
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Gaussian Kinematic Formula (GKF)

f’ Due to Adler and Taylor, it allows to evaluate expected T
values of Lipshitz-Killing curvatures (LKCs)/Minkowski
Functionals (MFs) for excursion regions under very

general circumstances.

f
[’z'—l—k

k| k) wiw;
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dimM =i [z + k] (M) Mi([u, 00))

EL! (Au(f, M)) =




Gaussian MF
-

® M, is given by

M3, 00)) = (2m) V2 H,_y(u)e /2

where H; denotes the Hermite polynomials: Hy(u) = 1,
Hy(u) = 2u, Hy(u) = 4u? — 1, H3(u) = 8u® — 12u

Beware: Gaussian MF are not the MF of a Gaussian field!
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Advantages of GKF
=

Splits the role of the correlation structure from the
threshold level.

The ££ (M) part depends only metric properties, and
hence on correlation; if the metric is scaled by \, £,.(M)
scales by \*.

Allows to cover easily masked data
Allows to cover important forms of nonGaussianity

|

Geometric Methods for Spherical Data Analysis — p. 8/37



Spherical Gaussian fields

-

Recall that
‘ (
Ty(w) = ) ammYom(@) and §j(x) =y b(5;)Te(x)
m=—/
and normalizing
~ x ~ Bi(x
Tulw) = Qig—l) , and Bj(aj) B JE >(2£+1)
I O \/ > oV (55) 50
Of course

L =1 j=1 | J
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Needlets Fields
-

Needlet component fields are defined by
l .
5](1') - Zb(E)T€($) ,J=1,2,3...
0

where the needlet kernel is given by

Ui((r.9)) © =) bg;) 5 Pel(@y)
l
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The function b(.)

1. ¥*(.) has support in [+, B], and hence b(é) has support
in ¢ [BI-1, B+

2. the function b(.) is infinitely differentiable in (0, co).

3. we have

=,/
E 2 _
]:

(partitions of unity)
We need B > 1, for instance B = 2
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THE SHAPE OF b()

b, Profiles — B=1.8
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Figure 1: Partition of unity J
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Localization property

-

fLocalization property
For any M there exists a constant ¢, s.t.,for every ¢ € S? :

CMBj
(1 4+ BJ arccos{z, y)M

(2, y)| <

(Quasi-Exponential localization) Recall that
arccos(z,y) — d(z,y), geodesic distance on the sphere.
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Figure 2: Needlets
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Needlets Fields

. n

he component can hence be viewed as projections:

o) = [ )Ty = 3 b T
14

# Other approaches to spherical wavelets have been
developed by many other people in this meeting; similar
applications of GKF are possible.
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Asymptotic Uncorrelation

fUnder some regularity conditions on Cj, uncorrelation —‘
inequality:

Cmr
(14 Bid(z,y))M @

|Corr(B;(x), Bj(y))] <

where d(x,y) = arccos({x,y)).

The needlet fields at any finite distance are asymptotically
uncorrelated.

IMPORTANT NOTICE: this is NOT due to localization.
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-

The scaling A

GKF on the sphere

equals the derivative of the covariance

function at the origin; in the case of random spherical
harmonics and needlet fields it is given by:

A=

(

e(ﬁ;D) it f(2) = Ty(x)
S 02(L)C 2L LD N
\\/ s pgczr - 1f(2)=65()
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Applications of GKF in cosmology

N n

# Our interest here is to compute the expected values of
the LKCs (MFs) in harmonic and needlet space.

# The advantages of implementing LKCs on needlet
space are:

» Needlets enjoy very good localization in pixel space -
are minimally affected by masked regions, especially
at high-frequency ;.

s The double-localization properties of needlets (in
real and harmonic space) allow a precise
interpretation of any possible anomalies - offer a
scale-by-scale probe of asymmetries and relevant
features e.g. Cold Spot.
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LKCs for a Gaussian field

f.o First LKC (e.g. Euler-Poincaré characteristic)
ue—u2/2
ELo(Au(f(2),5%) = 2{1 — ®(u)} + \? A
(2m)?

# Second LKC (e.g., half the boundary length)
EL1(Au(f(7),52) =7 x Ae /2 ;
# Third LKC (e.g., area)

ELo(Au(f(2),S5%) = 41 x {1 — ®(u)} .

L



Quadratic case (;(x)

N n

# Goal: anisotropic fluctuations in the power spectrum.

o First LKC (e.g. Euler-Poincare characteristic)

ELo(Au(Has(z), %))

—(u+1)/2
—4(1 - B(Vu+ 1)) + 4)\26—\/2_\/u 1
T

# Second LKC (half the boundary length)

EL: (Ay(Has(z), S?)) = 2mAe”(WHD/2
# Third LKC (area)

L |
ELo(Ay(Ha(x),S%) =41 x 2(1 — d(Vu +1)) .
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Cubic case ()

N n

o Useful to study local fluctuations in non-Gaussianity.

® First LKC: Euler characteristic

(V2

ELo(Ay(Hzs(), S?)) = 2(1 — () + 2\ Nor:

u,

# Second LKC: (half) boundary length

EL1(Ay(Hss(7), 52)) = mre”(V0)/2 .
® Third LKC: Area

B ELo(Ay(Hsy(x),5%)) = 4n(1 — &(Vu)) . N
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Masked case, M = S°\G
- N

#® Euler characteristic
ELo(Au(f(2), M)) = {1 — ®(u)} Lo(M)

T 1 2 9 ue /2
—As— M

# half the boundary length

Lo(M) ;

ELi(Au(f(x), M)) = 2{1 — ®(u)} El(M)JrgAm(U)@(M) :

® the area

ELa(Au(f(2),5%) = {1 — ®(u)} L2(5?).
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Computing LKCs from a (CMB) map
| N

# Harmonic space - obtain 7;(x) maps; normalize each
map by the expected RMS; power transform normalized
Ty maps to obtain NG maps.

# Needlet space - apply the standard needlet filter to the
spherical harmonic coefficients; we used B=1.5.

# The area functional is computed by finding the ratio of
Healpix pixels above a certain temperature threshold.

# The length and genus functionals are computed by
using the method described in Eriksen et. al. 2004
paper.
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Masked algorithm
=

Fix Cy, Lmax = 10, and generate Gaussian maps

Fix some threshold values u;, evaluate LKC by Monte
Carlo

Use least square regression to estimate £;(S%\G),
i=0,1,2

Use these estimates obtained in point 3 as an input for
GKF
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-

Asymmetries in the angular power spectrum T
2000 wh‘ole‘ sl; - ]
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Figure 3: Angular power spectrum estimator
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Nonlocal transform

A

s argued earlier

E{8(r)} = 3 b(5) " Cr.
14

providing a natural local estimator for the angular power
spectrum. Let us now introduce the smoothed sequences

9j:2(2) = - K({z,2))B3(z)dz .
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Nonlinear transform

-

For instance, (hemispherical asymmetry)

-

gj2(N) == o K((N,x))5}(x)dz , gj:2(S) = o K((S, )55 (z)dz

where K((a,.)) := Ijp =)({a,.)), and N, S denote the North

and South Poles (Hansen et al. (2009), Pietrobon et al.
(2009), Bennett (2012), Planck anisotropy papers). More
generally

ngQ(Z) = 2 K(<27$>)HQ(6j(x))dx ’ (3)
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Nonlocal transforms of Gaussian fields

B

We introduce, for every z € S?

gjiq(T) == « K((x,y>)Hq(Ej(y))dy ; (4)

where we assume:

K((@.5) = Y =——r(OP((z,y)) , some Ly € N

Motivations: local estimates of angular power spectrum,
bispectrum.
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LKCs at high

N n

® Euler-Poincaré characteristic

2
) we U /2

ELo(Ay(f(2), 5’2)) =2{1—-P(u)} + )‘j;2 (27T)3

41

# Boundary length
EL1(Au(f(2),52) = 7 x Ajae™/2;
# Area of the excursion region

ELo(Au(f(x),5%) =47 x {1 — ®(u)} .
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Nonlinear parameters

N

n the previous slides, we have used the constants:

L 20+1
_ > =1 “1r CrjgB(1)

L 2/+1

)‘j;q

and

ly o
Crija=26%(0) ) V()0 (5;)

0105

4

with obvious generalizations to ¢ > 2
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Euler-Poincaré Heuristics

-

#® EP characteristic = connected components - holes
o For u large, only one connected component
o Expected value = probability to go above u
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Excursion probabilities

W n

P {swp 7o) 2 uf-B (oA a0} <0 (e (-55 ) )

xEM g
(6)

e have that

where Ly(A,(f; M)) is, as defined earlier, the
Euler-Poincaré characteristic of the excursion set
Ay(f;M)={x e M: f(z) >u}, and a > 1 is a constant,
which depends on the field f and can be determined (see
Theorem 14.3.3 of RFG).
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Excursion probabilities

| n

(M and Vadlamani, 2013) For u large enough

lim sup
J—00

Pr { SUp Ging() > } {201 - B(u)) + 2ud(u) sy}

r€S?
(7)

&UQ
S exXp <_T> 3 (8)

where g;.,(z) has been normalized to have unit variance,
o(.), ®(.) denote standard Gaussian density and distribution
function, a > 1 is some constant and the parameters \;.,
has been defined above.
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Some generalizations - Area

-

The GKF only refers to expected values - it is of interest to
have some results on variances and CLT as well. For the
third LKC, these results are simple (MW,2011,2014):

-

Lo(Au(Ti(x), 5%)) = BLy(Au(Ti(2), 5%))
(~tug(u)

Two remarkable features:

N(0,1)

# For the needlets, the variance decays faster (= O(¢72))
# "Berry cancellation" at v = 0.
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Some generalizations

-

For the EP characteristic, Cammarota, M and Wigman
(2014) have recently shown that

-

2
(3 e U

VarLo(Ay(Ty(z), 5%)) = 1 o [H3(u) + Hi(w)]* + O0(£°/)2) .
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Some generalizations

-

This expression looks "Gaussian kinematic" and shows that
after normalization the variance is O(¢~!); for the needlet

case, convergence to zero is faster, Var = O(¢=2). The
result is a corollary of a more general statement concerning
the asymptotic convergence of maxima, minima and
saddles, in the high-frequency limit. It is also possible to
combine the statistics at different frequencies into a single
value - applications under way.

-
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Figure 4: Variance EP - analytic prediction
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