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Source Detection Problems in Astrophysics

Signal + Noise
SNR ~ 0.5 – 1.0

How many sources?

Feroz & Hobson (2008, MNRAS, 384, 449)
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Source Detection Problems in Astrophysics

Signal (8 sources)

How many sources?

Feroz & Hobson (2008, MNRAS, 384, 449)
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Probabilistic Source/Object Detection
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Textures in CMB

• Problems in Source Detection
– Identification
– Quantifying Detection
– Characterization



• Collect a set of N data points Di (i = 1, 2, …, N), denoted collectively as data 
vector D.

• Propose some model (or hypothesis) H for the data, depending on a set of M
parameter θi (i = 1, 2, …, N), denoted collectively as parameter vector θ.

• Bayes’ Theorem:

• Parameter Estimation: 
posterior α likelihood x prior

Bayesian Parameter Estimation
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• Consider two models H0 and H1

• Bayesian Evidence Z = P(D|H) =                        plays the central role in 
Bayesian Model Selection.

• Bayesian Evidence rewards model preditiveness.
– Sets more stringent conditions for the inclusion of new parameters

Bayesian Model Selection
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1. Sample N ‘live’ points uniformly inside the initial prior 
space (X0 = 1) and calculate their likelihoods

2. Find the point with the lowest Li and remove it from the 
list of ‘live’ points

3. Increment the evidence as  Z = Z + Li ( Xi-1 - Xi+1 ) / 2

4. Reduce the prior volume Xi / Xi-1 = ti where 
P(t) = N tN-1

5. Replace the rejected point with a new point sampled 
from          with constraint L > Li

6. If                      then stop else goto 3 ZXL i max

)(

Nested Sampling: Algorithm



Nested Sampling: Demonstration

Egg-Box Posterior



Nested Sampling: Demonstration

Egg-Box Posterior



Multi-modal Nested Sampling (MultiNest)

• Introduced by Feroz & Hobson (2008, MNRAS, 384, 449, arXiv:0704.3704), refined by 
Feroz, Hobson & Bridges (2009, MNRAS, 398, 1601, arXiv:0809.3437)

Ellipsoidal Rejection Sampling

Multi-Modal DistributionUni-Modal Distribution



Probabilistic Models for Source Detection



• Bayesian Purist Gold Standard: detect and characterize all sources in the data 
simultaneously ⇒ infer full parameter set θ = {Ns, p1, p2, …, pNs, q} where 
Ns = number of sources
pi = parameters associated with ith source
q = parameters common to all the sources

• Allows straight-forward inclusion of prior information on number of sources, Ns.

• Complication
– Length of parameter vector, θ, is variable
– Requires reversible-jump MCMC (see Green, 1995, Biometrika, V. 82)
– Counting degeneracy when assigning source parameters in each sample to 

sources in image ⇒ at least Ns! modes

• Practical Concern: If prior on Ns remains non-zero at large Ns

– Parameter space to be explored becomes very large
– Slow mixing, can be very inefficient

Bayesian Source Detection: Variable Source Number Model



Bayesian Source Detection: Variable Source Number Model

• 8 Gaussian sources, with variable scale and amplitude, in Gaussian noise
• Analysis done with BayeSys (http://www.inference.phy.cam.ac.uk/bayesys/)

– Runtime: 17 hours CPU time

Hobson & McLachlan, 2002, astro-ph/0204457



Bayesian Source Detection: Fixed Source Number Model

• Poor man’s approach to Bayesian gold standard

• Consider series of models HNs, each with fixed Ns, where Ns

goes from say 0 to Nmax

– Length of parameter space is fixed for each model
– Can use standard MCMC or nested sampling

• Determine preferred number of source using Bayesian model selection



Applications: Exoplanet Detection – HIP 5158
Feroz, Balan & Hobson, 2011, arXiv:1105.1150
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Bayesian Source Detection: Single Source Model

• Special case of fixed source number model, simply set Ns = 1

• Not restricted to detecting just one source in the data
– Trade-off high dimensionality with multi-modality
– Posterior will have numerous modes
– Each corresponding to a either real or spurious source

• Fast and reliable method when sources (effects) are non-overlapping

• Use local evidences for distinguishing between real and spurious sources



•

•
• H0 = “there is no source with its centre lying in the region S”
• H1 = “there is one source with its centre lying in the region S”

•

• For sources distributed according to Poisson distribution
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Quantifying Source Detection: Single Source Model
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MultiNest
• 7 out of 8 objects identified

– missed 1 object because 2 objects are very close
• runtime = 2 min on a normal desktop

Thermodynamic Integration
• Solution possible only through iterative sampling (see McLachlan & Hobson, 2002)
• runtime > 16 hours on a normal desktop

How Many Sources? Bayesian Solution
Feroz & Hobson, 2008, MNRAS, 384, 449, arXiv:0704.3704



Gravitational Lensing
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• 0.5 x 0.5 degree2, 100 gal per arcmin2 & σ = 0.3

• Concordance ΛCDM Cosmology with cluster mass & redshifts drawn 
from Press-Schechter mass function

• pth = 0.5

True Mass Map MaxEnt2 Reconstruction

Applications: Clusters in Weak Lensing

MultiNest Reconstruction

Feroz, Marshall & Hobson, 2008, arXiv:0810.0781



Clusters in Sunyaev-Zel’dovich (SZ)

• Distortion of CMB by hot intra-cluster electrons through inverse 
Compton scattering

21



Applications: Clusters in Sunyaev Zel’dovich (SZ)

background + 3 radio sources background + 3 radio sources
+ galaxy cluster

galaxy cluster

Galaxy cluster (and radio sources) in interferometric SZ data

Feroz et al., 2009, arXiv:0811.1199
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Applications: Clusters in Sunyaev Zel’dovich (SZ)

Bayesian Model Comparison
R = P(cluster | data)/P(no cluster | data)

background + 3 radio sources background + 3 radio sources
+ galaxy cluster

galaxy cluster

R = 0.35 R ~ 1033

Galaxy cluster (and radio sources) in interferometric SZ data

Feroz et al., 2009, arXiv:0811.1199
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Clusters in SZ – Parameter Constraints
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First AMI Blind Cluster: AMI-CL J0300+2613
arXiv:1012.4441, 1305.6655
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Planck SZ Challenge II – Results with MultiNest

• 50 x 106 pixels, ~ 1000 recovered clusters, ~ 3 CPU hours



Bayesian Source Detection: Iterative Approach

• Can be used when single-source model is not valid
– Overlapping/correlated (in terms of data) sources

• Fit n-source model and determine the distribution of residual data
–

• Analyse residual data and compare between:
– H0 = “there is no additional source, residual 

data is due to noise only”
– H1 = “there is an additional source present”

• If H1 is preferred then fit for n+1 sources 
and repeat the procedure

• Example: Extra-solar planet detection
– See Feroz, Balan & Hobson, 2011, arXiv:1012.5129



Applications: Exoplanet Detection
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where

Vj = systematic velocity with reference to jth observatory
Kp = velocity semi-amplitude of the pth planet
ωp = longitude of periastron of the pth planet
fi,p, = true anomaly of the pth planet
ep = orbital eccentricity of the pth planet
ep = orbital period of the pth planet
ep = fraction of an orbit of the pth planet, prior to the start of data taking at which 

periastron occurred



Applications: Exoplanet Detection – HD 10180
Feroz, Balan & Hobson, 2011, arXiv:1012.5129



Applications: Exoplanet Detection – GJ 667C

• Claims of up to 7 planets, with 3 super-
Earths inside the habitable zone 
(arXiv:1306.6074)

• Bayesian analysis by Feroz & Hobson, with 
correlated ‘red’ noise and iterative approach 
found evidence for no more than 3 planets 
(arXiv:1307.6984)

Feroz & Hobson, 2013, arXiv:1307.6984

Log-evidence values for residual data (after detection of Np planets) favouring 
1-planet model over 0-planet model. DCCF and DTERRA are the radial velocity 
data-sets obtained using CCF and TERRA data reduction methods respectively.

Top panel shows the observed radial velocity data. Bottom 
panel shows the mean fitted radial velocity curve overlaid on 
the observed data.



• H0 = “there is no source with its centre lying in the region S”
• H1 = “there is one source with its centre lying in the region S”

•

•

• Expected number of sources

• Expected number of true positives 

• Expected number of false positives

• Expected completeness

• Expected purity
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Purity, Completeness & Threshold Probability
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Purity, Completeness & Threshold Probability

Probabilistic classification of type-Ia 
Supernovae using Neural Network

Karpenka, Feroz & Hobson, 2012,  
arXiv:1208.1264



Conclusions 

• Bayesian statistics provide rigorous approach to astrophysical source detection
– Use Bayesian model selection to distinguish real sources from spurious ones

• Efficient and robust source detection can be done using nested sampling
– MultiNest allows sampling from multimodal/degenerate posteriors
– local and global evidences and parameter constraints
– typically ~ 100 times more efficient than standard MCMC

• Probabilistic source detection removes arbitrariness in choice of detection 
criterion

– allows calculation of expected purity and completeness

• MultiNest publicly available
– with SuperBayeS for SUSY phenomenology (www.superbayes.org)
– as a standalone inference engine (www.mrao.cam.ac.uk/software/multinest)


