Bayesian Source Detection

Farhan Feroz f.feroz@mrao.cam.ac.uk

Cavendish Astrophysics

Source Detection Problems in Astrophysics

Feroz & Hobson (2008, MNRAS, 384, 449)

How many sources?

Source Detection Problems in Astrophysics

Feroz & Hobson (2008, MNRAS, 384, 449)

How many sources?

Probabilistic Source/Object Detection

- Problems in Source Detection
 - Identification
 - Quantifying Detection
 - Characterization

Textures in CMB

Bayesian Parameter Estimation

- Collect a set of N data points D_i (i = 1, 2, ..., N), denoted collectively as data vector **D**.
- Propose some model (or hypothesis) *H* for the data, depending on a set of *M* parameter θ_i (*i* = 1, 2, ..., *N*), denoted collectively as parameter vector $\boldsymbol{\theta}$.

• Parameter Estimation: $P(\theta) \alpha L(\theta)\pi(\theta)$ posterior α likelihood x prior

Bayesian Model Selection

- Bayesian Evidence $Z = P(\mathbf{D}|H) = \int L(\theta)\pi(\theta)d\theta$ plays the central role in Bayesian Model Selection.
- Bayesian Evidence rewards model preditiveness.
 - Sets more stringent conditions for the inclusion of new parameters

Nested Sampling: Algorithm

- 1. Sample N 'live' points uniformly inside the initial prior space $(X_0 = 1)$ and calculate their likelihoods
- 2. Find the point with the lowest L_i and remove it from the list of 'live' points
- 3. Increment the evidence as $Z = Z + L_i (X_{i-1} X_{i+1})/2$
- 4. Reduce the prior volume $X_i / X_{i-1} = t_i$ where $P(t) = N t^{N-1}$

5. Replace the rejected point with a new point sampled from $\pi(\theta)$ with constraint $L > L_i$

 $x \leftarrow 6$. If $L_{\max}X_i < \alpha Z$ then stop else goto 3

Nested Sampling: Demonstration

Egg-Box Posterior

Nested Sampling: Demonstration

Egg-Box Posterior

Multi-modal Nested Sampling (MultiNest)

Introduced by Feroz & Hobson (2008, MNRAS, 384, 449, arXiv:0704.3704), refined by Feroz, Hobson & Bridges (2009, MNRAS, 398, 1601, arXiv:0809.3437)

Ellipsoidal Rejection Sampling

Probabilistic Models for Source Detection

Bayesian Source Detection: Variable Source Number Model

- Bayesian Purist Gold Standard: detect and characterize all sources in the data simultaneously \Rightarrow infer full parameter set $\theta = \{N_s, p_1, p_2, ..., p_{N_s}, q\}$ where $N_s =$ number of sources $p_i =$ parameters associated with ith source q = parameters common to all the sources
- Allows straight-forward inclusion of prior information on number of sources, N_s .
- Complication
 - Length of parameter vector, $\boldsymbol{\theta}$, is variable
 - Requires reversible-jump MCMC (see Green, 1995, *Biometrika*, V. 82)
 - Counting degeneracy when assigning source parameters in each sample to sources in image \Rightarrow at least $N_s!$ modes
- Practical Concern: If prior on N_s remains non-zero at large N_s
 - Parameter space to be explored becomes very large
 - Slow mixing, can be very inefficient

Bayesian Source Detection: Variable Source Number Model

Hobson & McLachlan, 2002, astro-ph/0204457

- 8 Gaussian sources, with variable scale and amplitude, in Gaussian noise
- Analysis done with BayeSys (<u>http://www.inference.phy.cam.ac.uk/bayesys/</u>)
 - Runtime: 17 hours CPU time

Bayesian Source Detection: Fixed Source Number Model

- Poor man's approach to Bayesian gold standard
- Consider series of models H_{N_s} , each with fixed N_s , where N_s goes from say 0 to N_{max}
 - Length of parameter space is fixed for each model
 - Can use standard MCMC or nested sampling
- Determine preferred number of source using Bayesian model selection

Applications: Exoplanet Detection – HIP 5158

100 data predicted curve for 1 companion predicted curve for 2 companions 50 radial velocity (m/s) 0 -50 -100 0 200 400 600 800 1000 1200 1400 1600 1800 Julian day number [-2453204.936119] $\ln Z$ $N_{\rm P}$ s (m/s) 10.31 ± 1.09 1 30.05 ± 0.14 2 78.19 ± 0.15 2.28 ± 0.31 3 70.68 ± 0.16 2.28 ± 0.28

Feroz, Balan & Hobson, 2011, arXiv:1105.1150

Table 2. The evidence and jitter values for the system HIP 5158. The null evidence (-255.3) has been subtracted from each $\ln Z$ value.

Bayesian Source Detection: Single Source Model

- Special case of fixed source number model, simply set $N_s = 1$
- Not restricted to detecting just one source in the data
 - Trade-off high dimensionality with multi-modality
 - Posterior will have numerous modes
 - Each corresponding to a either real or spurious source
- Fast and reliable method when sources (effects) are non-overlapping
- Use local evidences for distinguishing between real and spurious sources

Quantifying Source Detection: Single Source Model

•
$$p_{TP} = \frac{R}{1+R}$$

•
$$R = \frac{\Pr(H_1 \mid D)}{\Pr(H_0 \mid D)} = \frac{\Pr(D \mid H_1) \Pr(H_1)}{\Pr(D \mid H_0) \Pr(H_0)} = \frac{Z_1 \Pr(H_1)}{Z_0 \Pr(H_0)}$$

- H_0 = "there is no source with its centre lying in the region S"
- H_1 = "there is one source with its centre lying in the region S"

•
$$Z_0 = \frac{1}{|S|} \int_{S} L_0 dX = L_0$$

• For sources distributed according to Poisson distribution

$$\frac{\Pr(H_1)}{\Pr(H_0)} = \mu_s, \quad \therefore R = \frac{Z_1 \mu_s}{L_0}$$

How Many Sources? Bayesian Solution

x (pixels)

Feroz & Hobson, 2008, MNRAS, 384, 449, arXiv:0704.3704

MultiNest

- 7 out of 8 objects identified
 - missed 1 object because 2 objects are very close
- runtime = 2 min on a normal desktop

Thermodynamic Integration

- Solution possible only through iterative sampling (see McLachlan & Hobson, 2002)
- runtime > 16 hours on a normal desktop

Applications: Clusters in Weak Lensing

Feroz, Marshall & Hobson, 2008, arXiv:0810.0781

- 0.5 x 0.5 degree², 100 gal per $\operatorname{arcmin}^2 \& \sigma = 0.3$
- Concordance ACDM Cosmology with cluster mass & redshifts drawn from Press-Schechter mass function

•
$$p_{\rm th} = 0.5$$

Clusters in Sunyaev-Zel'dovich (SZ)

• Distortion of CMB by hot intra-cluster electrons through inverse Compton scattering

Applications: Clusters in Sunyaev Zel'dovich (SZ)

Feroz et al., 2009, arXiv:0811.1199

Galaxy cluster (and radio sources) in interferometric SZ data

Applications: Clusters in Sunyaev Zel'dovich (SZ)

Feroz et al., 2009, arXiv:0811.1199

Galaxy cluster (and radio sources) in interferometric SZ data

R = 0.35 R ~ 10³³

Clusters in SZ – Parameter Constraints

Feroz et al., 2009, arXiv:0811.1199

Planck SZ Challenge II – Results with MultiNest

• 50 x 10⁶ pixels, ~ 1000 recovered clusters, ~ 3 CPU hours

Bayesian Source Detection: Iterative Approach

- Can be used when single-source model is not valid
 - Overlapping/correlated (in terms of data) sources
- Fit *n*-source model and determine the distribution of residual data
 - $\Pr(\mathbf{R}_n | \mathbf{D}, H_n) = \int \Pr(\mathbf{R}_n | \Theta, H_n) \Pr(\Theta | \mathbf{D}, H_n) d\Theta$
- Analyse residual data and compare between:
 - H_0 = "there is no additional source, residual data is due to noise only"
 - $H_1 =$ "there is an additional source present"
- If H₁ is preferred then fit for *n*+1 sources and repeat the procedure
- Example: Extra-solar planet detection
 - See Feroz, Balan & Hobson, 2011, arXiv:1012.5129

Figure 1. Radial velocity measurements, with 1σ errorbars, and the mean fitted radial velocity curve with three planets for HD 37124.

Applications: Exoplanet Detection

$$v(t_i, j) = V_j - \sum_{p=1}^{N_p} K_p \left[\sin(f_{i,p} + \omega_p) + e_p \sin(\omega_p) \right]$$

where

- V_j = systematic velocity with reference to j^{th} observatory
- K_p = velocity semi-amplitude of the p^{th} planet
- ω_p = longitude of periastron of the p^{th} planet

$$f_{i,p_i}$$
 = true anomaly of the p^{th} planet

- e_p = orbital eccentricity of the p^{th} planet
- e_p = orbital period of the p^{th} planet
- e_p = fraction of an orbit of the p^{th} planet, prior to the start of data taking at which periastron occurred

Applications: Exoplanet Detection – HD 10180

Feroz, Balan & Hobson, 2011, arXiv:1012.5129

Parameter	HD 10180 b	HD 10180 c	HD 10180 d	HD 10180 e	HD 10180 f	HD 10180 g
P (days)	5.76 ± 0.02	16.35 ± 0.05	49.74 ± 0.20	122.75 ± 0.54	600.17 ± 13.75	2266.22 ± 412.42
	(5.76)	(16.36)	(49.74)	(122.69)	(601.88)	(2231.44)
K (m/s)	4.54 ± 0.12	2.89 ± 0.13	4.28 ± 0.14	2.91 ± 0.14	1.43 ± 0.20	3.06 ± 0.16
	(4.63)	(2.94)	(4.25)	(2.70)	(1.79)	(2.98)
e	0.07 ± 0.03	0.13 ± 0.04	0.03 ± 0.02	0.09 ± 0.04	0.15 ± 0.09	0.09 ± 0.05
	(0.08)	(0.12)	(0.03)	(0.08)	(0.25)	(0.05)
ϖ (rad)	2.60 ± 0.38	2.62 ± 0.35	2.56 ± 0.16	2.65 ± 0.53	3.08 ± 0.97	2.89 ± 2.60
	(2.51)	(2.49)	(5.12)	(2.95)	(2.43)	(5.98)
X	0.22 ± 0.06	0.35 ± 0.06	0.43 ± 0.27	0.23 ± 0.11	0.31 ± 0.28	0.67 ± 0.10
	(0.24)	(0.37)	(0.83)	(0.16)	(0.27)	(0.73)
$m\sin i (M_{\rm J})$	0.04 ± 0.00	0.04 ± 0.00	0.08 ± 0.00	0.07 ± 0.00	0.06 ± 0.00	0.20 ± 0.01
	(0.04)	(0.04)	(0.08)	(0.07)	(0.07)	(0.20)
a (AU)	0.06 ± 0.00	0.13 ± 0.00	0.27 ± 0.00	0.49 ± 0.00	1.42 ± 0.03	3.45 ± 0.16
	(0.06)	(0.13)	(0.27)	(0.49)	(1.42)	(3.40)

Applications: Exoplanet Detection – GJ 667C

Feroz & Hobson, 2013, arXiv:1307.6984

- Claims of up to 7 planets, with 3 super-Earths inside the habitable zone (arXiv:1306.6074)
- Bayesian analysis by Feroz & Hobson, with correlated 'red' noise and iterative approach found evidence for no more than 3 planets (arXiv:1307.6984)

	$\mathcal{D}_{\mathbf{C}}$	CF	$\mathcal{D}_{ ext{TERRA}}$		
$N_{\rm p}$	white noise	red noise	white noise	red noise	
1	17.05 ± 0.16	4.22 ± 0.16	16.95 ± 0.16	6.82 ± 0.16	
2	9.80 ± 0.16	2.24 ± 0.15	18.94 ± 0.16	5.00 ± 0.16	
3	2.57 ± 0.15	0.44 ± 0.14	4.22 ± 0.15	0.89 ± 0.15	
4	0.13 ± 0.14	0.16 ± 0.14	1.37 ± 0.15	0.00 ± 0.15	
5			-0.49 ± 0.14		

Log-evidence values for residual data (after detection of N_p planets) favouring 1-planet model over 0-planet model. **D**_{CCF} and **D**_{TERRA} are the radial velocity data-sets obtained using CCF and TERRA data reduction methods respectively.

the observed data.

Purity, Completeness & Threshold Probability

- H_0 = "there is no source with its centre lying in the region S"
- H_1 = "there is one source with its centre lying in the region *S*"
- $R = \frac{\Pr(H_1 \mid D)}{\Pr(H_0 \mid D)} = \frac{\Pr(D \mid H_1) \Pr(H_1)}{\Pr(D \mid H_0) \Pr(H_0)} = \frac{Z_1 \Pr(H_1)}{Z_0 \Pr(H_0)}$

•
$$p_{TP} = R / (1 + R)$$

- Expected number of sources
- Expected number of *true positives*
- Expected number of *false positives*

$$N_{tot} = \sum_{i=1}^{N} p_{TP,i}$$

$$\hat{N}_{TP} = \sum_{i=1, p_{TP,i} > p_{th}}^{N} p_{TP,i}$$

$$\hat{N}_{FP} = \sum_{i=1, p_{TP,i} > p_{th}}^{N} (1 - p_{TP,i})$$

$$\hat{\varepsilon} = \hat{N}_{TP} / \hat{N}_{tot}$$

N

- Expected *completeness*
- Expected *purity*

$$\hat{\tau} = \hat{N}_{TP} / (\hat{N}_{TP} + \hat{N}_{FP})$$

Purity, Completeness & Threshold Probability

Conclusions

- Bayesian statistics provide rigorous approach to astrophysical source detection
 - Use Bayesian model selection to distinguish real sources from spurious ones
- Efficient and robust source detection can be done using nested sampling
 - MultiNest allows sampling from multimodal/degenerate posteriors
 - local and global evidences and parameter constraints
 - typically ~ 100 times more efficient than standard MCMC
- Probabilistic source detection removes arbitrariness in choice of detection criterion
 - allows calculation of expected purity and completeness
- MultiNest publicly available
 - with SuperBayeS for SUSY phenomenology (www.superbayes.org)
 - as a standalone inference engine (www.mrao.cam.ac.uk/software/multinest)