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WMAP & Cosmic Background Radiation — 3
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CHAMP & Earth’s Magnetic Field




Common problems — 1 0/49

Scalar data d(r) modeled on a unit sphere €2 parameterized as r = (6, ¢):
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Spherical harmonics Y},,,(r) form an orthonormal basis on €2:

/ l:q,Yz/m/ dS) = 01 Oy - 1<— a delta function
Q




Common problems — 2 10/49

The domain of data availability or the region of interest is i € ().

C
Q]
-0
The spherical harmonics Y}, (r) are not orthogonal on R:
/ l:jn,}/l’m’ df) = Dlm,l’m’- <— not a delta function
R

The spatiospectral localization kernel D is not sparse, but it is blocky (order m is

a good quantum number) for axially symmetric .



Slepian’s problem 11/49

Eigenvectors of D are expansion coefficients of Slepian functions,

g(r) = Zglmnm(r)-

They satisfy the spherical concentration problem to the region R of area A:

)\:/gzdﬂ// g* dQ) = maximum.
R Q

The Slepian functions ¢, (r), designed for any region R, are still orthonormal

over the whole sphere {2 but now they are also orthogonal over the region R:

/ gags 42 = Aadas  and / 9agp Al = Oap-
R Q

They are a doubly orthogonal bandlimited basis for /ocalized and global signals.



Slepian functions for abitrary regions ( L
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Slepian functions for cosmology
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a=L-m+1 a=L-m+0 a=L-m-1
o
I
e
A = 0.000000 A = 0.000000 A = 0.000250
—
I
= —
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(q\]
I
= —
A = 0.000136 A = 0.000336 A = 0.038757
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Common problems — 3 14/49

Signal estimation: Problem 1

Given d(r) and (n(r)n(r’)), estimate the signal s(r) at source level:

realizing that the estimate §(r) is always bandlimited to 0 < L < oc.

Spectral estimation: Problem 2

Given d(r) and (n(r)n(r’)), and assuming the signal behaves as

estimate the power spectral density .5}, for 0 < [ < o0.
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Signal estimation: Problem 1

Given d(r) and (n(r)n(r’)), estimate the signal s(r) at source level:
L

$(r) = SimYim(r),

Im

realizing that the estimate §(r) is always bandlimited to 0 < L < oc.

Spectral estimation: Problem 2

Given d(r) and (n(r)n(r’)), and assuming the signal behaves as
<3lm> = (0 and <8lm82k/m/> = Sl 5”/5mm/,

estimate the power spectral density .5}, for 0 < [ < o0.




Why we solve Problem 1 15/49

Chen, Wilson & Tapley, Science (2006):
Spatial leakage effects are also evident, because of filtering applied to suppress

the noise in high-degree and high- order spherical harmonics.



Why we solve Problem 2 16/49
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Problem 1 — Finding the signal 17/49

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the quadratic misfit to the data over . The optimal solution depends on D!

Stm, = ZDlm . / Ay, ds.

Finding D lis tough, so construct a truncated-Slepian basis estimate instead:

The solution depends on the localization eigenvalue A, at the same rank:

Truncation prevents the blowup of the low eigenvalues.



Problem 1 — Finding the signal 17/49

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the quadratic misfit to the data over . The optimal solution depends on D~

St = ZDlm . / dYyr,, ds.

Finding D lis tough, so construct a truncated-Slepian basis estimate instead:

J

s(r) = Z Sa9a(T).

«

The solution depends on the localization eigenvalue )\, at the same rank:

§a — )\al/ dga dS.
R

Truncation prevents the blowup of the low eigenvalues.



Slepian estimation of gravity field changes — 1  1su9
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Slepian estimation of gravity field changes — 2 199

Greenland Total Mass Change
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Slepian estimation of gravity field changes — 3 2049

d)
/&5\*

"c|> © 1000 A S S [ S S —
All Antarctica
|1/2003 1/2013|
13)
00 - iwu I
S ] lni i i l| |4!|
] I . ! Ili||iiiiiii ::1 i“ l'illi !!---!al Iliilll i
& ! I|||Er|| i
=500 — —
[Int=—1083]
: p 1 Slope = -101 + 9 Gt/yr
N ion = 20 + A
o § S5 1000 Aclcelelratlor? I20 _.7 Gt{yr 2I | . |
1 2002 2004 2006 2008 2010 2012

-400 -300 -200 -100 O 100
surface density change (cm water equivalent)



Ice mass loss (2002—-2013) — 1 21/49
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Ice mass loss (2002—-2013) — 2 22/49
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Ice mass loss (2002—-2013) — 3 23/49
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Ice mass loss (2002—-2013) — 4 24/49
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High-quality spectral estimation 25/49

To assess the quality of our spectral estimates 5}, we calculate:

variance: v; = (S?) — (5))? (1)
pias: b, = (S))— S, 2)
error: € = S} — 5 (3)

mse: {(ef) = v+ b7 (4)

A good estimator is unbiased and/or minimizes the mse.

The industry-standard maximume-likelihood method via the iterative, nonlinear,
Newton-Raphson algorithm returns the minimum-variance unbiased estimate

of the power spectral density — but the estimation variance is quite high!:

(SMLY = G, (5)



Finding the spectrum, the multitaper way 26/49

Use the Slepian functions as data tapers, with weights be chosen iteratively to
minimize the mse of the multitaper estimate (Wieczorek & Simons, JFAA, 2007).
Dahlen & Simons, GJI (2008) choose the eigenvalues of D:

2)

*@ZMT__Z (25+1Z

Bias (degree coupling) depends only on the bandwidth L of the Slepian windows,

/Q 0u (1) d(r) Y7, (r) d2

and variance is almost exactly /X times smaller than the periodogram variance
when their (effective) bandwidths are similar, as it is in the 1-D case!

Spectral and spatial concentration trade off via the Shannon number, which is the

sole parameter to be chosen by the analyst:
(L41)2

K = ZA (L4 1)2—

i



Finding the spectrum, the multitaper way 26/49

Use the Slepian functions as data tapers, with weights be chosen iteratively to
minimize the mse of the multitaper estimate (Wieczorek & Simons, JFAA, 2007).
Dahlen & Simons, GJI (2008) choose the eigenvalues of D:

2>

SZMT__Z <2z+1z

Bias (degree coupling) depends only on the bandwidth L of the Slepian windows,

/Q 0u (1) d(r) Y7, (r) d2

and variance is almost exactly /X times smaller than the periodogram variance

when their (effective) bandwidths are similar, as it is in the 1-D case!

Spectral and spatial concentration trade off via the Shannon number, which is the
sole parameter to be chosen by the analyst:
(L+1)2

K = Z)\ )ﬁ.
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Spectral estimation on a sphere in geophysics and cosmology
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SUMMARY

We address the problem of estimating the spherical-harmonic power spectrum of a statistically
isotropic scalar signal from noise-contaminated data on a region of the unit sphere. Three
different methods of spectral estimation are considered: (i) the spherical analogue of the one-
dimensional (1-D) periodogram, (ii) the maximum-likelihood method and (iii) a spherical
analogue of the 1-D multitaper method. The periodogram exhibits strong spectral leakage,
especially for small regions of area 4 < 4, and is generally unsuitable for spherical spectral
analysis applications, just as itis in 1-D. The maximum-likelihood method is particularly useful
in the case of nearly-whole-sphere coverage, A4 = 4, and has been widely used in cosmology
to estimate the spectrum of the cosmic microwave background radiation from spacecraft
observations. The spherical multitaper method affords easy control over the fundamental
trade-off between spectral resolution and variance, and is easily implemented regardless of the
region size, requiring neither non-linear iteration nor large-scale matrix inversion. As a result,
the method is ideally suited for most applications in geophysics, geodesy or planetary science,
where the objective is to obtain a spatially localized estimate of the spectrum of a signal from
noisy data within a pre-selected and typically small region.

GJI Geodesy, potential field and applied geophysics

Key words: Time series analysis; Fourier analysis; Inverse theory; Spatial analysis.



Whole-sphere spectral estimate 28/49

Assuming isotropy, add the power from all orders and subtract noise term:

2
A 1
= d(r)Y;: (r)dQ)| — N,
"= g 2| a0 0| -
This estimate is unbiased:
b"> =0, (6)
and its variance, our gold standard, can be calculated from elementary statistics:
2
> = ST (it Ny, (7)

In the absence of noise, the nonzero sampling variance is termed cosmic.

The problem is that we do not have whole-sphere data.



Cut-sphere spectral estimate (periodogram) 29/49

Simply work with the available data — i.e. use a gain-adjusted boxcar window:

A 47 1
sp [ =7
= (A) 21+1Z

m

2
— noise correction.

[ )Yz, w0

This estimate is biased (unless S; = S or B = €)):

47 1
bt = Dm/m/2—5/ Sy 8
z Z (A)Qlﬂﬂ%;‘ Im.1'm| w | O, (8)

l/ B / i

and the variance is:

2(4m/A)?
UZSP — (2l—|—1)2 y: SI(SP—FNP)‘Dlmapq,z ’ (9)

mm' | pq

The appearance of the spatiospectral localization kernel D in these expressions
has been known since at least the work of Peebles and Hauser (1973).



The periodogram coupling matrix 30/49

The periodogram coupling matrix shows the leakage from untargeted degrees:

47T 1 2
K/: Dm/m/ .
! <A>21+lgﬂ;’ .1/ |

It shows us the contributions of adjacent I’ when we seek the power at (.

72
72

s - &
S £ 801 _

- 157 _ 66 ill | =60
f 10 A X 40 T T allll T T | 4.IO
Q o nlln | =20
o 5 4 o T aiitin T T T 1
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degree I degree I

This coupling is neither bandlimited nor very well localized in the spectrum...

we can do much better!



Single-taper spectral estimate 31/49

Use one of the Slepian functions as data window:

5 = 1 2| () 06 Vi)

to obtain a biased estimate controlled by a coupling matrix

N 2 + 1 [ p 1
= ( ) Z 9o pal” 0

0 0

2
— noise correction, (10)

which shows the resulting estimate is a bandlimited and well-localized average

of the spectral power within a certain bandwidth.

Spectral and spatial concentration trade off via the Shannon number, which is the
sole parameter to be chosen by the analyst.

As with the periodogram, the Slepian functions can be normalized to yield an
unbiased estimate of a white power spectrum.



Multiple-taper spectral estimate 32/49

Single-tapers are good, but weighted averaging the estimates made with many

different tapers reduces the estimation variance without increasing the bias.

S}WT — Z caglo‘ where Z Co = 1. (11)

« «

Two tapers «v and [ have a covariance that behaves almost as if both estimates

were statistically uncorrelated:
af : :
v; - = diagonally dominant, (12)

thus the multitaper estimation variance

o't = Z ca vy (13)

is reduced by the addition of estimates made with subsequent tapers.



The multitaper coupling matrix 33/49

The weights ¢, can be chosen iteratively to minimize the mean-squared error of
the multitaper estimate. However, a logical choice are the eigenvalues of D. Then

the multitaper coupling matrix is

2
o0 +1 & [ p U

My = (2p+1) :
(L+1)22p: 00 0

which — amazingly — depends only upon the chosen bandwidth L.

100 x K . (%)
o W o o

0 20 40 60 80 100
degree I



Quadratic spectral estimators

34/49

Maximume-likelihood ... very cumbersome, unbiased, high variance
Whole-sphere ... unattainable

2

A 1
WS — noise correction.

Y| —

[ ) ¥i w a2

Periodogram ... broadband bias, high variance

SOP — (%D 21112 /Rd(r) * (1) dQ

m

2

Single-taper ... bandlimited bias

S / 0o (1) d(r) Y75, (r) A

2

Qv — noise correction.

LT 9l —

Multiple-taper ... bandlimited bias, lower variance, easily implemented

e 1 ey
MT E , o

— noise correction.

(14)

(19)

(16)

(17)



Appraisal of performance 35/49

We study the performance of the various estimators by forming the variance ratios

(07)F = oS

where XX stands for any of the acronyms SP, DP, ML or MT.

The deconvolved periodogram

- Z ~149
l/

where K is the periodogram coupling matrix, is unbiased (S°F) = .

For white signal and noise, S; = S and IN; = N, the deconvolved periodogram

concides with the maximum likelihood estimator.

Since (07 )M = (67)PF = (&) K};*, we can compute the maximum-likelihood

variance ratio without actually forming the maximume-likelihood estimate.



Maximume-likelihood / Whole-sphere variance 36/49
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Periodogram / Whole-sphere variance 37/49
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Multitaper / Whole-sphere variance 38/49
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Multitaper / Whole-sphere variance at large | 39/49
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An example for cosmology 40/49

angular scale angular scale
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Conclusions 41/49

1. Each the discussed estimators is quadratic in the data: a common framework

allows us to study their relative merits.

2. The maximume-likelihood estimate provides the best unbiased estimate of the
spectrum. However, its calculation is cumbersome, and requires an iterative

procedure and the inversion of very large matrices.

3. The periodogram estimate is generally unsuitable for power spectral estima-

tion on the sphere, much like it is in one dimension.

4. The Slepian multitaper method yields a smoothed and thus biased estimate
of the spectrum, but it requires neither iteration nor large-scale matrix inver-
sion. Its variance is much lower than that of any other method, and the only
parameter that needs to be specified by the analyst is the Shannon number,

or the space-bandwidth product diagnostic of the spatiospectral concentration.



Review: Scalar Slepian functions 42/49

Eigenvectors of DD expand to bandlimited Slepian functions:

that satisfy Slepian’s concentration problem to the region R of area A:

The Shannon number, or sum of the eigenvalues,

Is the effective dimension of the space for which the bandlimited g are a basis.



Review: Scalar Slepian functions 43/49

Eigenvectors of D expand to bandlimited Slepian functions:

L
g = Zglelmp
Im

that satisfy Slepian’s concentration problem to the region X of area A:

)\:/g2dﬂ// g* df) = maximum.
R Q

The Shannon number, or sum of the eigenvalues,

A
K= (L+ 1)24—,

-
Woilt sl wiave dbneasiara’ ANsotrRCRdaliyétdbalis 6 (8limitey: Gimetiamasis,,,

both spatially and spectrally, to a new basis with only about /K functions, g.



Vector spherical harmonics 44/49
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New: Vectorial Slepian functions — 1 45/49

Let g be a spectrally bandlimited vector field:

and maximize the spatial concentration inside of the region of interest:

The vector Shannon number, or sum of the eigenvalues,

is the effective dimension space for which the vector g are a basis.



New: Vectorial Slepian functions — 1

46/49

Let g be a spectrally bandlimited vector field:

L m
g = gr - gt — S: S: Ulmle + ‘/lmBlm + VVlmClma

[=0 m=-—I1

and maximize the spatial concentration inside of the region of interest:

/g-gdﬂ
)\_ R

/g'ng
Q

The vector Shannon humber, or sum of the eigenvalues,

— maximum.

K:[S(L+1)2—2]A

E)

s the effective dimension of the space for which the vector g are a basis.



Vectorial Slepian functions — 2 47/49
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Inverse problems in a vector Slepian basis — 1  4su9

Signal:
NGDC720 V3 (Maus, 2010)
L =72

Data points:
2292 equal-area-random

points over Africa

Noise:

Gaussian random values
=0,

o? = 2.5% of signal energy




Inverse problems in a vector Slepian basis — 2 499

a = H00 km a = 800 km
J = 386 J = 291

True potential

Relative mse=2.4% Relative mse=18%



