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Common problems — 1 9/49

Scalar data d(r) modeled on a unit sphere Ω parameterized as r = (θ, φ):

ŷ

r

!
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ẑ

x̂

Spherical harmonics Ylm(r) form an orthonormal basis on Ω:∫
Ω

Y ∗lmYl′m′ dΩ = δll′δmm′ . ← a delta function



Common problems — 2 10/49

The domain of data availability or the region of interest is R ∈ Ω.

R
2

R
1 Θ

Θ

π−Θ

The spherical harmonics Ylm(r) are not orthogonal on R:∫
R

Y ∗lmYl′m′ dΩ = Dlm,l′m′ . ← not a delta function

The spatiospectral localization kernel D is not sparse, but it is blocky (order m is

a good quantum number) for axially symmetric R.



Slepian’s problem 11/49

Eigenvectors of D are expansion coefficients of Slepian functions,

g(r) =
L∑
lm

glmYlm(r).

They satisfy the spherical concentration problem to the region R of area A:

λ =

∫
R

g2 dΩ

/∫
Ω

g2 dΩ = maximum.

The Slepian functions gα(r), designed for any region R, are still orthonormal

over the whole sphere Ω but now they are also orthogonal over the region R:∫
R

gαgβ dΩ = λαδαβ and

∫
Ω

gαgβ dΩ = δαβ.

They are a doubly orthogonal bandlimited basis for localized and global signals.



Slepian functions for abitrary regions (L = 60) 12/49
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Slepian functions for cosmology 13/49
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Common problems — 3 14/49

Signal estimation: Problem 1

Given d(r) and 〈n(r)n(r′)〉, estimate the signal s(r) at source level:

ŝ(r) =
L∑
lm

ŝlmYlm(r),

realizing that the estimate ŝ(r) is always bandlimited to 0 ≤ L <∞.

Spectral estimation: Problem 2

Given d(r) and 〈n(r)n(r′)〉, and assuming the signal behaves as

〈slm〉 = 0 and 〈slms∗l′m′〉 = Sl δll′δmm′ ,

estimate the power spectral density Sl, for 0 ≤ l <∞.
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Why we solve Problem 1 15/49

Chen, Wilson & Tapley, Science (2006):

Spatial leakage effects are also evident, because of filtering applied to suppress

the noise in high-degree and high- order spherical harmonics.



Why we solve Problem 2 16/49



Problem 1 — Finding the signal 17/49

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the quadratic misfit to the data over R. The optimal solution depends on D−1:

ŝlm =
L∑
l′m′

D−1
lm,l′m′

∫
R

d Y ∗l′m′ dΩ.

Finding D−1 is tough, so construct a truncated-Slepian basis estimate instead:

ŝ(r) =
J∑
α

ŝαgα(r).

The solution depends on the localization eigenvalue λα at the same rank:

ŝα = λ−1
α

∫
R

dgα dΩ.

Truncation prevents the blowup of the low eigenvalues.
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Slepian estimation of gravity field changes — 1 18/49



Slepian estimation of gravity field changes — 2 19/49



Slepian estimation of gravity field changes — 3 20/49



Ice mass loss (2002–2013) — 1 21/49
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Ice mass loss (2002–2013) — 3 23/49



Ice mass loss (2002–2013) — 4 24/49



High-quality spectral estimation 25/49

To assess the quality of our spectral estimates Ŝl, we calculate:

variance: vl = 〈Ŝ2
l 〉 − 〈Ŝl〉2 (1)

bias: bl = 〈Ŝl〉 − Sl (2)

error: εl = Ŝl − Sl (3)

mse: 〈ε2l 〉 = vl + b2
l . (4)

A good estimator is unbiased and/or minimizes the mse.

The industry-standard maximum-likelihood method via the iterative, nonlinear,

Newton-Raphson algorithm returns the minimum-variance unbiased estimate

of the power spectral density — but the estimation variance is quite high!:

〈ŜML
l 〉 = Sl. (5)



Finding the spectrum, the multitaper way 26/49

Use the Slepian functions as data tapers, with weights be chosen iteratively to

minimize the mse of the multitaper estimate (Wieczorek & Simons, JFAA, 2007).

Dahlen & Simons, GJI (2008) choose the eigenvalues of D:

ŜMT
l =

1

K

∑
α

λα

(
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Y ∗lm(r) dΩ

∣∣∣∣2
)

Bias (degree coupling) depends only on the bandwidth L of the Slepian windows,

and variance is almost exactlyK times smaller than the periodogram variance

when their (effective) bandwidths are similar, as it is in the 1-D case!

Spectral and spatial concentration trade off via the Shannon number, which is the

sole parameter to be chosen by the analyst:

K =

(L+1)2∑
α

λα = (L+ 1)2 A

4π
.
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Sorry, wrong journal 27/49



Whole-sphere spectral estimate 28/49

Assuming isotropy, add the power from all orders and subtract noise term:

ŜWS
l =

1

2l + 1

∑
m

∣∣∣∣∫
Ω

d(r)Y ∗lm(r) dΩ

∣∣∣∣2 −Nl,

This estimate is unbiased:

bWS
l = 0, (6)

and its variance, our gold standard, can be calculated from elementary statistics:

vWS
l =

2

2l + 1
(Sl +Nl)

2 , (7)

In the absence of noise, the nonzero sampling variance is termed cosmic.

The problem is that we do not have whole-sphere data.



Cut-sphere spectral estimate (periodogram) 29/49

Simply work with the available data — i.e. use a gain-adjusted boxcar window:

ŜSP
l =

(
4π

A

)
1

2l + 1

∑
m

∣∣∣∣∫
R

d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction.

This estimate is biased (unless Sl = S or R = Ω):

bSP
l =

∑
l′

[(
4π

A

)
1

2l + 1

∑
mm′

|Dlm,l′m′|2 − δll′
]
Sl′ , (8)

and the variance is:

vSP
l =

2(4π/A)2

(2l + 1)2

∑
mm′

∣∣∣∣∣∑
pq

(Sp +Np)|Dlm,pq|2
∣∣∣∣∣
2

. (9)

The appearance of the spatiospectral localization kernel D in these expressions

has been known since at least the work of Peebles and Hauser (1973).



The periodogram coupling matrix 30/49

The periodogram coupling matrix shows the leakage from untargeted degrees:

Kll′ =

(
4π

A

)
1

2l + 1

∑
mm′

|Dlm,l′m′ |2 .

It shows us the contributions of adjacent l′ when we seek the power at l.

0

5

10

15
9

l = 60

0

5

10

15
10

l = 40

0

5

10

15

l = 20

0 20 40 60 80 100
0

5

10

15 1014

l = 0

degree l’

10
0 

× 
K

ll’
  (

%
)   Θ = 20°

72

l = 60

72

l = 40

72

l = 20
10

0 

0 20 40 60 80 100
0

40

80 66

l = 0

degree l’

× 
K

ll’
  (

%
)   Θ = 70°

This coupling is neither bandlimited nor very well localized in the spectrum...

we can do much better!



Single-taper spectral estimate 31/49

Use one of the Slepian functions as data window:

Ŝαl =
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction, (10)

to obtain a biased estimate controlled by a coupling matrix

Mα
ll′ =

(
2l′ + 1

4π

)∑
pq

|gα,pq|2
 l p l

0 0 0

2

which shows the resulting estimate is a bandlimited and well-localized average

of the spectral power within a certain bandwidth.

Spectral and spatial concentration trade off via the Shannon number, which is the

sole parameter to be chosen by the analyst.

As with the periodogram, the Slepian functions can be normalized to yield an

unbiased estimate of a white power spectrum.



Multiple-taper spectral estimate 32/49

Single-tapers are good, but weighted averaging the estimates made with many

different tapers reduces the estimation variance without increasing the bias.

ŜMT
l =

∑
α

cαŜ
α
l where

∑
α

cα = 1. (11)

Two tapers α and β have a covariance that behaves almost as if both estimates

were statistically uncorrelated:

vαβl = diagonally dominant, (12)

thus the multitaper estimation variance

vMT
l =

∑
αβ

cα v
αβ
l cβ (13)

is reduced by the addition of estimates made with subsequent tapers.



The multitaper coupling matrix 33/49

The weights cα can be chosen iteratively to minimize the mean-squared error of

the multitaper estimate. However, a logical choice are the eigenvalues of D. Then

the multitaper coupling matrix is

Mll′ =
2l′ + 1

(L+ 1)2

L∑
p

(2p+ 1)

 l p l′

0 0 0

2

,

which — amazingly — depends only upon the chosen bandwidth L.
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Quadratic spectral estimators 34/49

Maximum-likelihood ... very cumbersome, unbiased, high variance

Whole-sphere ... unattainable

ŜWS
l =

1

2l + 1

∑
m

∣∣∣∣∫
Ω

d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction. (14)

Periodogram ... broadband bias, high variance

ŜSP
l =

(
4π

A

)
1

2l + 1

∑
m

∣∣∣∣∫
R

d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction. (15)

Single-taper ... bandlimited bias

Ŝαl =
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction. (16)

Multiple-taper ... bandlimited bias, lower variance, easily implemented

ŜMT
l =

1

K

∑
α

λαŜ
α
l . (17)



Appraisal of performance 35/49

We study the performance of the various estimators by forming the variance ratios

(σ2
l )

XX = vXX
l /vWS

l

where XX stands for any of the acronyms SP, DP, ML or MT.

The deconvolved periodogram

ŜDP
l =

∑
l′

K−1
ll′ Ŝ

SP
l′ , (18)

where K is the periodogram coupling matrix, is unbiased 〈ŜDP
l 〉 = Sl.

For white signal and noise, Sl = S and Nl = N , the deconvolved periodogram

concides with the maximum likelihood estimator.

Since (σ2
l )

ML = (σ2
l )

DP =
(

4π
A

)
K−1
ll , we can compute the maximum-likelihood

variance ratio without actually forming the maximum-likelihood estimate.



Maximum-likelihood / Whole-sphere variance 36/49
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Periodogram / Whole-sphere variance 37/49
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Multitaper / Whole-sphere variance 38/49
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Multitaper / Whole-sphere variance at large l 39/49
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An example for cosmology 40/49
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Conclusions 41/49

1. Each the discussed estimators is quadratic in the data: a common framework

allows us to study their relative merits.

2. The maximum-likelihood estimate provides the best unbiased estimate of the

spectrum. However, its calculation is cumbersome, and requires an iterative

procedure and the inversion of very large matrices.

3. The periodogram estimate is generally unsuitable for power spectral estima-

tion on the sphere, much like it is in one dimension.

4. The Slepian multitaper method yields a smoothed and thus biased estimate

of the spectrum, but it requires neither iteration nor large-scale matrix inver-

sion. Its variance is much lower than that of any other method, and the only

parameter that needs to be specified by the analyst is the Shannon number,

or the space-bandwidth product diagnostic of the spatiospectral concentration.



Review: Scalar Slepian functions 42/49

Eigenvectors of D expand to bandlimited Slepian functions:

g =
L∑
lm

glmYlm,

that satisfy Slepian’s concentration problem to the region R of area A:

λ =

∫
R

g2 dΩ

/∫
Ω

g2 dΩ = maximum.

The Shannon number, or sum of the eigenvalues,

K = (L+ 1)2 A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.

Voilà! We have concentrated a poorly localized basis of (L + 1)2 functions, Ylm,both spatially and spectrally, to a new basis with only about N functions, g.
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Vector spherical harmonics 44/49

Plm = r̂Ylm

(P63)r

Blm = ∇1Ylm√
l(l+1)

(B63)θ

(B63)φ

Clm = −r̂×∇1Ylm√
l(l+1)

(C63)θ

(C63)φ



New: Vectorial Slepian functions — 1 45/49

Let g be a spectrally bandlimited vector field:

g = gr + gt =
L∑
l=0

m∑
m=−l

UlmPlm + VlmBlm +WlmClm,

and maximize the spatial concentration inside of the region of interest:

λ =

∫
R

g · g dΩ∫
Ω

g · g dΩ
= maximum.

The vector Shannon number, or sum of the eigenvalues,

K = [3(L+ 1)2 − 2]
A

4π
,

is the effective dimension space for which the vector g are a basis.
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Vectorial Slepian functions — 2 47/49
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Inverse problems in a vector Slepian basis — 1 48/49

Signal:

NGDC720 V3 (Maus, 2010)

L = 72

Data points:

2292 equal-area-random

points over Africa

Noise:

Gaussian random values

µ = 0,

σ2 = 2.5% of signal energy

V

dr

dθ

dφ



Inverse problems in a vector Slepian basis — 2 49/49

True potential

V

a = 500 km

J = 386

Ṽ

‖V − Ṽ ‖

Relative mse=2.4%

a = 800 km

J = 291

Ṽ

‖V − Ṽ ‖

Relative mse=18%


