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Observations on spherical manifolds
Earth

Credit: NASA
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Observations on spherical manifolds
Earth’s interior

Credit: http://maps.unomaha.edu/
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Observations on spherical manifolds
Sun

Credit: NASA
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Observations on spherical manifolds
Diffusion magnetic resonance imaging

Credit: http://neuroimages.tumblr.com/
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Observations on spherical manifolds
Computer graphics

Credit: http://www.pauldebevec.com

Jason McEwen Spherical Signal Analysis



Sampling Concentration Wavelets CS Filtering

Observations on spherical manifolds
Computer graphics

Jason McEwen Spherical Signal Analysis



Sampling Concentration Wavelets CS Filtering

Observations on spherical manifolds
Cosmology

Credit: Abrams and Primack Inc.
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Observations on spherical manifolds
Cosmic microwave background (CMB) radiation

Credit: WMAP
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Observations on spherical manifolds
Galaxy surveys

Credit: SDSS
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Observations on spherical manifolds
Radio interferometry

Credit: SKA Organisation
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Sampling
Spherical harmonics

Spherical harmonics are the eigenfunctions of the Laplacian on the sphere:

∆S2 Y`m = −`(`+ 1)Y`m

eigenfunctions

Figure: Spherical harmonics (real part) for `,m ∈ {0, 1, 2, 3}, m ≤ `, with `
increasing down the rows from top to bottom and m increasing across the
columns from left to right.
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Sampling
Spherical harmonic transform and sampling theorems

Function on the sphere f ∈ L2(S2) may be represented by its spherical harmonic expansion:

f (θ, ϕ) =
∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) ,

where the spherical harmonic coefficients are given by:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

How do we sample a band-limited signal to capture all of its information content?

→ Sampling theorems on the sphere

Jason McEwen Spherical Signal Analysis
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Sampling
Practical sampling schemes on the sphere

Figure: HEALPix pixelisation of the sphere (Gorski et al. 2005)
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Sampling
Sampling theorems on the sphere

From an information theoretic perspective, fundamental property is the number of samples
required to capture the information content of signal band-limited at L.

Optimal number of samples given by harmonic dimensionality of L2.

Equiangular sampling theorems:

Driscoll & Healy (1994): 4L2 samples

McEwen (2008): 2L2 samples (+spin but unstable)

Huffenberger & Wandelt (2010): 4L2 samples (+spin)

McEwen & Wiaux (2011): 2L2 samples (+spin)

Optimal equiangular sampling scheme (but not sampling theorem):

Khalid, Kennedy & McEwen (2014): L2 samples (+spin)

Jason McEwen Spherical Signal Analysis
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Sampling
Sampling theorems on the ball

Consider functions on the ball B3 = R+ × S2, i.e. f ∈ L2(B3).

Fourier-Bessel functions are the canonical orthogonal basis on the ball since they are the
eigenfunctions of the Laplacian:

X`m(k, r) = j`(kr)Y`m(θ, ϕ).

Fourier-Bessel

Fourier-Bessel transform of f ∈ L2(B3) reads

f̃`m(k) =

√
2
π

∫
B3

d3r f (r) j∗` (kr) Y∗`m(θ, ϕ),

where d3r = r2 sin θ dr dθ dϕ is the usual measure in spherical coordinates.

Inverse transform given by

f (r) =

√
2
π

∞∑
`=0

∑̀
m=−`

∫
R+

dkk2 f̃`m(k) j`(kr) Y`m(θ, ϕ).

But does not admit a sampling theorem on the ball.
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Sampling
Sampling theorems on the ball

Define the Fourier-Laguerre basis functions by

Z`mp(r) = Kp(r)Y`m(θ, ϕ),

Fourier-Laguerre

where radial basis defined by the spherical Laguerre functions Kp(r) ∝ e−r/2τL(2)
p (r/τ) and

L(2)
p is p-th generalised Laguerre polynomial of order two (Leistedt & McEwen 2012).

A signal f ∈ L2(B3) can then be decomposed as

f (r) =

∞∑
p=0

∞∑
`=0

∑̀
m=−`

f`mp Z`mp(r),

where the harmonic coefficients are given by the usual projection

f`mp = 〈f |Z`mp〉B3 =

∫
B3

d3r f (r) Z∗`mp(r).

Affords exact and efficient harmonic transform on the ball.
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Sampling
Codes

SSHT code: Spin spherical harmonic transforms
http://www.spinsht.org

A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

FLAG code: Fourier-Laguerre transforms
http://www.flaglets.org

Exact wavelets on the ball
Leistedt & McEwen (2012)

Jason McEwen Spherical Signal Analysis
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Slepian spatial-spectral concentration
Formulation

Spherical harmonics localised in spectral domain but have global spatial support.

Spatial-spectral localisation trade-off.

Given a region R, find the band-limited function f with energy concentrated in region R.

Maximise the energy concentration:

λ =

∫
R

d3µ(r)|f (r)|2∫
B3

d3µ(r)|f (r)|2

concentration

Figure: Non-trivial spatial region R (SDSS)
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Slepian spatial-spectral concentration
Solution

Solve eigenproblem to find band-limited, spatially concentrated functions:

SR f = λ f

Eigenvalue λ gives a measure of concentration.

Dual problem: find space-limited, spectrally concentrated function.

Spatial-spectral concentration on the sphere

Albertella, Sansò & Sneeuw (1999)

Mortlock, Challinor & Hobson (2002)

Wieczorek & Simons (2005), Simons, Dahlen & Wieczorek (2006)

Khalid, Durrani, Kennedy & Sadeghi (2011)

Spatial-spectral concentration on the ball

Khalid, Kennedy & McEwen (2014)
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Slepian spatial-spectral concentration
Fourier-Bessel Slepian spatially concentrated functions

 

 

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

Figure: Fourier-Bessel band-limited spatially concentrated eigenfunctions.
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Slepian spatial-spectral concentration
Fourier-Laguerre Slepian spatially concentrated functions
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Figure: Fourier-Laguerre band-limited spatially concentrated eigenfunctions.
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Slepian spatial-spectral concentration
Sparsity of Slepian decomposition
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Figure: Spectral decay of the Fourier-Laguerre (red, dashed) and Slepian coefficients (blue, solid)
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Slepian spatial-spectral concentration
Code

Slepian code: Slepian spatial-spectral concentration
Coming soon!
Slepian spatial-spectral concentration on the ball
Khalid, Kennedy & McEwen (2014)
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Wavelets
Recall wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/tutorial/]Jason McEwen Spherical Signal Analysis

http://www.wavelet.org/tutorial/


Sampling Concentration Wavelets CS Filtering

Wavelets on the sphere
Dilation and translation

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on
the sphere is defined by

[R(ρ)f ](ω) = f (R−1
ρ · ω), ω = (θ, ϕ) ∈ S2, ρ = (α, β, γ) ∈ SO(3) .

translation

How define dilation on the sphere?

Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

Harmonic dilation wavelets
McEwen et al. (2006), Sanz et al. (2006)

Isotropic undecimated wavelets
Starck et al. (2005), Starck et al. (2009)

Needlets
Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)

Scale-discretised wavelets
Wiaux, McEwen, Vandergheynst, Blanc (2008)

Jason McEwen Spherical Signal Analysis
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Wavelets on the sphere
Wavelet construction

Fast algorithms:
McEwen, Hobson, Mortlock & Lasenby (2007), Wandelt & Gorski (2002), Risbo (1995)

Wiaux, Jacques, Vielva & Vandergheynst (2006)

Leistedt, McEwen, Vandergheynst & Wiaux (2013)

McEwen, Vandergheynst & Wiaux (2013)

Scale-discretised wavelets: Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst & Blanc (2008)

Extend to spin functions (McEwen et al., in prep.).

(a) Real(2Ψj) (b) Imag(2Ψj) (c) Abs(2Ψj)

Figure: Spin 2 scale-discretised wavelets on the sphere.Jason McEwen Spherical Signal Analysis
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Wavelets on the sphere
Forward and inverse transform

The spin scale-discretised wavelet transform is given by the usual projection onto each
wavelet:

W sΨ
j
(ρ) = 〈sf , Rρ sΨ

j〉

projection

=

∫
S2

dΩ(ω)sf (ω)(Rρ sΨ
j)∗(ω) .

Wavelet coefficients are scalar and not spin.

Wavelet coefficients live in SO(3)× Z; thus, directional structure is naturally incorporated.

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

sf (ω) =
J∑

j=0

finite sum

∫
SO(3)

d%(ρ)WsΨ
j
(ρ)(Rρ sΨ

j)(ω) .

wavelet contribution

Jason McEwen Spherical Signal Analysis
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Wavelets on the ball
Fourier-LAGuerre wavelets (flaglets)

Exact wavelets on the ball
Leistedt & McEwen (2012)

Angular (radial) aperture of localised functions is invariant under radial (angular) translation.

Alternatives: Spherical 3D isotropic wavelets (Lanusse, Rassat & Starck 2012).
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(a) Wavelet kernel translated by r = 0.2

0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8
x 10

−5

0.1 0.2 0.3 0.4
−4

−3

−2

−1

0

1

2

3

4
x 10

−5

0.1 0.2 0.3 0.4

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−5

r

A
m
p
li
tu
d
e

r

A
m
p
li
tu
d
e

r

A
m
p
li
tu
d
e

(b) Wavelet kernel translated by r = 0.4

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Wavelets on the ball
Fourier-LAGuerre wavelets (flaglets)

Exact wavelets on the ball
Leistedt & McEwen (2012)

Angular (radial) aperture of localised functions is invariant under radial (angular) translation.

Alternatives: Spherical 3D isotropic wavelets (Lanusse, Rassat & Starck 2012).
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Wavelets on the ball
Fourier-LAGuerre wavelets (flaglets)

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Wavelets on the ball
Fourier-LAGuerre wavelets (flaglets)

Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) = 〈f , TrΨjj′ 〉B3

projection

=

∫
B3

d3r′f (r′)(TrΨjj′ )(r′) .

Original function may be synthesised exactly in practice from its wavelet (and scaling)
coefficients:

f (r) =
J∑

j=J0

J′∑
j′=J′0

finite sum

∫
B3

d3r′WΨjj′
(r′)(TrΨjj′ )(r′) .

wavelet contribution
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Wavelets on the sphere and ball
Codes

FastCSWT code
http://www.fastcswt.org

Fast directional continuous spherical wavelet transforms
McEwen, Hobson, Mortlock & Lasenby (2007)

S2DW code
http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst & Blanc (2008)
McEwen, Vandergheynst, & Wiaux (2013)
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Wavelets on the sphere and ball
Codes

S2LET code
http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

FLAGLET code
http://www.flaglets.org

Exact wavelets on the ball
Leistedt & McEwen (2012)
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Compressive sensing and sparse reconstruction
Euclidean setting

Ill-posed inverse problem:

y = Φx + n = ΦΨα + n .

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .
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Compressive sensing and sparse reconstruction
Spherical setting

Compressive sensing on the sphere:

Rauhut & Ward (2011)

Burq, Dyatlov, Ward & Zworski (2012)

Sparse signal regularisation on the sphere:

Abrial, Moudden, Starck, Afeyan, Bobin, Fadili & Nguyen (2007)

Bobin, Starck, Sureau & Basak (2012)

McEwen, Puy, Thiran, Vandergheynst, Van De Ville & Wiaux (2013)

More efficient sampling on the sphere→ implications for sparse signal reconstruction
(McEwen, Puy, Thiran, Vandergheynst, Van De Ville & Wiaux 2013)

Improves both the dimensionality and sparsity of signals in the spatial domain.

Improves fidelity of sparse signal reconstruction.
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Optimal filters
Formulation

Observed field model:

y(ω) =
∑

i

si(ω) + n(ω) ,

model

where each source is represented by its amplitude Ai and profile, si(ω) = Ai τi(ω), and τi(ω)
is a dilated and rotated version of the source profile τ(ω) of default dilation centred on the
north pole, i.e. τi(ω) = R(ρi)D(Ri|p) τ(ω).

Recover parameters of each source {Ai,Ri, ρi} that describe amplitude, scale and
position/orientation respectively.

Filter the signal on the sphere to enhance the source profile relative to the background:

w(ρ,R) =

∫
S2

dΩ(ω) f (ω) [R(ρ)ϕR]∗(ω) ,

filtering

where ϕ ∈ L2(S2) is the filter kernel.
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Optimal filters
Solution

Matched filters applied extensively in Euclidean space (e.g. the plane) to enhance a source
profile in a background noise process (e.g. Sanz et al. 2001, Herranz et al. 2002).

Extend optimal filtering to the sphere:

Tegmark & de Oliveira-Costa (1998): point sources

Schafer, Pfrommer, Hell & Bartelmann (2006): axisymmetric

McEwen, Hobson & Lasenby (2008): directional

Matched filter (MF) on the sphere

The optimal MF defined on the sphere is obtained by solving the constrained optimisation
problem:

min
ϕR

σ
2
w(0, R) such that 〈w(0, R)〉 = A .

The spherical harmonic coefficients of the resultant MF are given by

(ϕR)`m =
τ`m

a C`

, where a =
∑
`m

C−1
` |τ`m|2 .
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Optimal filters
Example

(a) Spectra

(b) Template (c) MF (d) SAF

Figure: Optimal filters for bubble template with size θcrit = 20◦.
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Optimal filters
Code

S2FIL code: Optimal filtering on the sphere
http://www.jasonmcewen.org/codes/s2fil/doc/index_s2fil.html

Optimal filters on the sphere
McEwen, Hobson & Lasenby (2008)

Jason McEwen Spherical Signal Analysis

http://www.jasonmcewen.org/codes/s2fil/doc/index_s2fil.html


Sampling Concentration Wavelets CS Filtering

Summary

Spherical signal processing and analysis is beginning to become a mature field,
with widespread application.

Sampling

Spatial-spectral concentration

Wavelets

Compressive sensing

Optimal filtering

Others. . .

Application in cosmology and beyond. . .
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