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BASICS OF BAYESIAN INFERENCE

Rev. Thomas Bayes (1701–1761)

• Collect a set of N data points Di (i = 1,2, . . . , N),
which we denote collectively as the data vector D .

• Propose some model (or hypothesis) H for the data,
depending on M parameters θj (j = 1, . . . ,M), that
we denote by the parameter vector θ.

• Apply Bayes’ theorem

Pr(θ|D , H) =
Pr(D |θ, H) Pr(θ|H)

Pr(D |H)
→ P (θ) =

L(θ)π(θ)

E

– prior π(θ) ≡ Pr(θ|H) represents our state of knowledge (or prejudices) of the
parameter values before analysing the data

– likelihood L(θ) ≡ Pr(D |θ, H) of the data given a particular set of parameter values,
which modulates prior to give the. . .

– posterior P (θ) ≡ Pr(θ|D , H) which is the result, namely the complete inference

– evidence E ≡ Pr(D |H) provides normalisation of the posterior (and, as we see,
it is much more!)
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BAYESIAN PARAMETER ESTIMATION

• For parameter estimation, the posterior
P (θ) is the complete inference

• Can summarise using peak(s)
position(s) and covariance(s)

• Can obtain constraints on subsets of
parameters by marginalisation

• Can maximise or, better, map out P (θ) (with grids or sampling)
2



BAYESIAN MODEL SELECTION

• Often wish to determine which of a set of alternative models best describes the data

• Model selection: for Hi (i = 0,1), the probability density associated with D is

Ei ≡ Pr(D |Hi) =
∫
Li(θ)πi(θ) dθ

then consider ratio
Pr(H1|D)

Pr(H0|D)
=
E1

E0

Pr(H1)

Pr(H0)

• Evidence naturally incorporates Occam’s razor: a model is preferred if more of its
parameter space is likely, and unfavoured if large areas in its parameter space having
low likelihood values, even if the likelihood function is very highly peaked. 3



COSMOLOGICAL CASE-STUDY: CMB ANISOTROPIES

• Prior to recombination at t ∼ 300 000 yrs (or z ≈ 1100) plasma and photons tightly
coupled and transition to freely propagating photons occured quickly
⇒ CMB is snapshot of primordial density fluctuations in matter at this epoch

• These density fluctuations are of great interest for two reasons.

(i) These fluctuations later collapse under gravity to form all structure in the Universe

(ii) In the inflationary model, the form of these primordial density fluctuations are a
powerful probe of the physics of the very early Universe
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BAYESIAN STATISTICS AND COSMOLOGY

• Typical example: standard CMB data analysis pipeline
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• Note parameter numbers: map (∼ 107), power spectrum (∼ 103),
cosmological parameters (∼ 10), cosmological models (∼ 1) 5



METROPOLIS–HASTINGS ALGORITHM

x(1)Q(x;x(1)) P �(x)
L� • Metropolis–Hastings algorithm to sample P (θ):

– start at arbitrary point θ0

– at each step draw trial point θ′ ← Q(θ′|θn) from
proposal distribution

– calculate ratio r = P (θ′)Q(θn|θ′)/P (θn)Q(θ′|θn)

– if r ≥ 1 accept θn+1 = θ′;
if r < 1 accept with probability r, else θn+1 = θn

• Implementation of basic MH algorithm is trivial:

Initialise θ0; set n = 0
Repeat [

Sample a point θ′ from Q(·|θn)
Sample a uniform [0,1] random variable U
If U ≤ α(θ′, θn) set θn+1 = θ′, else θn+1 = θn
Increment n]

• After initial burn-in period, any (positive) proposal Q⇒ convergence to P (θ)

• Common choice for Q is multivariate Gaussian centred on θn (CosmoMC)
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METROPOLIS–HASTINGS ALGORITHM: SOME PROBLEMS

x(1)Q(x;x(1)) P �(x)
L�

• But. . . choice of Q strongly affects rate of conver-
gence and sampling efficiency.
• Large proposal width ε⇒ trial points rarely accepted
• Small proposal width ε⇒ chain explores P (θ) by a

random walk – very slow
• If largest scale of P (θ) is L
⇒ typical diffusion time t ∼ (L/ε)2

• If smallest scale of P (θ) is `
⇒ need ε ∼ `⇒ diffusion time t ∼ (L/`)2

Q

P • Particularly bad for multimodal distributions
• Transitions between distant modes very rare
• No choice of proposal width ε works
• Standard convergence tests will suggest converged,

but actually only true in a subset of modes
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EVALUATION OF THE EVIDENCE

• The evaluation of the evidence integral

Ei =
∫
Li(θ)πi(θ) dθ

presents a great numerical challenge in higher-dimensions

• Approximate/restricted methods: Gaussian approximation, Savage–Dickey ratio

• Basic general method is thermodynamic integration: define

E(λ) =
∫
Lλ(θ)π(θ) dθ,

• Begin MCMC sampling from Lλ(θ)π(θ), starting with λ = 0 then slowly raising
the value according to some annealing schedule until λ = 1.

• BUT requires ∼ 10× number of samples needed for parameter estimation
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Nested sampling:
efficient parameter space exploration
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SOME COSMOLOGICAL POSTERIORS

• Some cosmological posteriors are nice, others are nasty
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ΛCDM: θ = (ωb, ωc, θ, τ, lnA,ns)

using CMB+SDSS+HST data
(Trotta 2004)

Detecting SZ clusters in CMB:
θ = (X,Y,A,R)

(Hobson & McLachlan 2003)

• Posterior exploration (parameter estimation) and integration (model selection)
traditionally performed using MCMC sampling
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NESTED SAMPLING

• Technique for efficient evidence evaluation
(and posterior samples) (Skilling 2004)

• Define X(λ) =
∫
L(θ)>λ

π(θ) dθ

• Write inverse L(X), i.e. L(X(λ)) = λ

• Evidence becomes one-dimensional integral

E =
∫
L(θ)π(θ) dθ =

∫ 1

0
L(X) dX

• Suppose can evaluate Lj = L(Xj) where
0 < Xm < · · · < X2 < X1 < 1

⇒ estimate E by any numerical method

E =
m∑
j=1

Ljwj

(wj = 1
2(Xj−1 −Xj+1) for trapezium rule)
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Nested sampling approach to summation:
1. Set i = 0; initially X0 = 1, E = 0

2. Sample N points {θj} randomly from π(θ)

and calculate their likelihoods

3. Set i→ i+ 1

4. Find point with lowest likelihood value (Li)

5. Remaining prior volumeXi = tiXi−1 where
Pr(ti|N) = NtN−1

i ;
or just use 〈ti〉 = N/(N + 1)

6. Increment evidence E → E + Liwi

7. Remove lowest point from active set

8. Replace with new point sampled from π(θ)

within hard-edged region L(θ) > Li

9. If LmaxXi < αE (where some tolerance)

⇒ E → E +Xi
∑N
j=1L(θj)/N ; stop

else goto 3
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• Advantages:
– proceeds exponentially to high-likelihood regions (Xi ∼ e−i/N )
– typically requires around few 100 times fewer samples than thermodynamic

integration to calculate evidence to same accuracy (plus error estimate)

log X

log L
Anneal

log X

B

C

D

E
F

A

slope=−1

(b)(a)

log L

• Does not get stuck at
phase changes like thermo. int.

• As λ : 0→ 1 annealing should
track along curve

• But d logL
d logX = −1

λ, so annealing
schedule cannot navigate
convex regions (phase changes)

• Bonus: posterior samples easily obtained as
a by-product. Simply take full sequence of
sampled points θj and weight jth sample by
pj = Ljwj/E, e.g.

µQ =
∑
j

pjQ(θj),

σ2
Q =

∑
j

(pjQ(θj)− µQ)2
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MULTINEST
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MULTIMODAL NESTED SAMPLING – MULTINEST

• Most challenging task: at each iteration i we must replace the point removed with one
sampled from π(θ) within the complicated, hard-edged region L(θ) > Li
for (possibly) degenerate and/or multimodal posteriors

• Could use MCMC, but typically very inefficient
⇒ use analytic rejection sampling from within tailored bound to L(θ) = Li surface

• MULTINEST – at each nested sampling iteration i:
– construct optimal multi-ellipsoid bound for live points (variable ellipsoid number),
– maintains total volume exceeding expected prior volume
– determine ellipsoid overlaps using cheap exact algorithm (Alfano et al. 2003)
– pick ellipsoid randomly and sample new point with L > Li, accounting for overlaps

• MULTINEST now widely used in astronomy and particle physics (∼ 350 projects)
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IDENTIFICATION OF POSTERIOR MODES

• For multimodal posteriors, useful to identify which samples ‘belong’ to which mode
⇒ automatic mode identification algorithm

• For well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing mode identification
⇒ ‘local’ evidence and parameter constraints for each isolated mode
⇒ sum of local evidences equals ‘global’ evidence 16



TOY PROBLEM: EGG-BOX LIKELIHOOD

• Likelihood resembles egg-box and is given by

L(θ1, θ2) = exp
[
2 + cos

(
θ1

2

)
cos

(
θ2

2

)]5
,

and prior is U(0,10π) for both θ1 and θ2.

• Use 2000 active points⇒∼ 30,000 likelihood evaluations to obtain
logZ = 235.86± 0.06 (analytical logZ = 235.88) [See Demo]
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RECENT DEVELOPMENTS: IMPORTANCE NESTED SAMPLING

• Generic problem: estimate 〈h(x)〉 under f(x)

• If one can (easily) generate samples xi from f(x), then 〈h〉 = 1
N

∑
i h(xi)

• If not, then one can try importance sampling:
– generate samples from g(x) and define weights wi = f(xi)/g(xi)
– then 〈h〉 =

∑
iwih(xi)/

∑
iwi
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• Apply importance sampling idea to calculation of the evidence

• Uses all the points sampled by MULTINEST

• Calculate evidence as

Z =
1

N

N∑
j=1

L(θj)π(θj)

g(θj)

where N =
∑niter
i=1 ni is total number of points sampled and g(θ) is the importance

sampling function given by

g(θ) =
1

N

niter∑
i=1

niEi(θ)

Vi

with Vi = volume enclosed by union of ellipsoids at ith iteration and

Ei(θ) =

1 if θ lies in the union of ellipsoids
0 otherwise
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APPLICATION OF INS TO GAUSSIAN SHELLS
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ADVANTAGES OF INS OVER VANILLA NESTED SAMPLING

• No change in the way MULTINEST explores the parameter space

• Every sampled point contributes to the evidence calculation (no waste)

• Evidences are an order of magnitude more accurate than vanilla nested sampling

• Evidence calculation not dependent on expected prior volumes
– mitigates mismatches between iso-likelihood contour and multi-ellipsoid bound
– obtain accurate evidences even in MULTINEST constant efficiency mode
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GALILEAN MONTE-CARLO: HIGH-DIMENSIONAL NESTED SAMPLING
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GALILEAN MONTE-CARLO: APPLICATION TO ROSENBROCK FUNCTION

• n-D Rosenbrock function: f(θ) = −
∑n
j=1[(1− θi)2 + 100(θi+1 − θ2

i )2]

• Global maximum at (θ1, θ2, . . . , θn) = (−1,1, . . . ,1)

• Thin curving degeneracy⇒ finding global maximum very challenging

• Works well even for n > 100: Ztrue = −5.80, ZGMC = −5.76± 0.05
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GALILEAN MONTE-CARLO: APPLICATION TO RASTRIGIN FUNCTION

• n-D Rastrigin function: f(θ) = −10n−
∑n
j=1[θ2

i − 10 cos(2πθi)]

• Highly multi-modal function with global maximum at θi = 0 ∀i.

• Again works well even for n > 100
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Machine-learning
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BAYESIAN STATISTICS AND COSMOLOGY

• Typical example: standard CMB data analysis pipeline
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• Note parameter numbers: map (∼ 107), power spectrum (∼ 103),
cosmological parameters (∼ 10), cosmological models (∼ 1) 26



MACHINE-LEARNING IN ASTRONOMY

• In modern astronomy, one is increasingly faced with the problem of analysing
large, complicated and multidimensional data sets

• Such analyses typically include: data description and interpretation, inference,
pattern recognition, prediction, classification, compression, and many more

• One way of performing such tasks is through machine-learning methods

• Machine-learning software for astronomy, such as the ASTROML package∗ and
SKYNET (see later), has recently started to become available

• Machine-learning can be divided into two broad categories: supervised learning
and unsupervised learning.

∗http://astroml.github.com/
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NEURAL NETWORK APPROACH TO MACHINE-LEARNING

• NNs are an intuitive and well-established approach to machine learning, both
supervised and unsupervised.

• Loosely inspired by structure and func-
tional aspects of a brain

• Consist of a group of interconnected
nodes, each of which processes infor-
mation it receives and passes result to
other nodes via weighted connections

• NNs constitute a non-linear statistical data modeling tool, which may be used to:
– model complex relationships between a set of inputs and outputs
– find patterns in data
– capture the statistical structure between observed variables

28



FEED-FORWARD NETWORKS

• In general, NN structure can be arbitrary, but many machine-learning applications
can be performed using feed-forward NNs

• Structure is directed: input layer of nodes
passes information to output layer via
zero, one, or many ‘hidden’ layers

• Such a network can ‘learn’ mapping be-
tween inputs and outputs, given a set of
training data, then make predictions of
the outputs for new input data

• Moreover, a universal approximation theorem assures us that any L2-function
f : <n → <m, can be approximated to arbitrary mean square error accuracy by
feed-forward NN with 1 or more hidden layers

29



FEED-FORWARD NETWORKS. . .

• Consider 3-layer NN: input layer, hidden layer and output layer

hidden layer: hj = g(1)(f(1)
j ); f

(1)
j =

∑
l

w
(1)
jl xl + b

(1)
j ,

output layer: yi = g(2)(f(2)
i ); f

(2)
i =

∑
l

w
(2)
ij hj + b

(2)
i ,

• Use non-linear activation function (e.g. g1(x) = tanhx or sig(x)) on outputs of all
hidden layer neurons; use g2(x) = x

• Feed-forward NNs have been used in astronomy for over 20 years.
But. . . widespread use has been limited by difficulty in training networks using
standard techniques such as backpropagation, in particular networks having many
nodes and/or numerous hidden layers (i.e. ‘large’ and/or ‘deep’ networks)
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SKYNET
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NETWORK TRAINING

• Training a NN = finding set of network weights and biases that maximise accuracy
of predicted outputs; denote them collectively by the network parameter vector a

• But, must be careful to avoid overfitting to our train-
ing data at the expense of making accurate predic-
tions for unseen input values.

• Set of training data inputs and outputs, D = {x (k), t(k)}, is provided by the user

• Approximately 75 per cent should be used for actual NN training and remainder
retained as a validation set used to determine convergence and avoid overfitting
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NETWORK TRAINING: OBJECTIVE FUNCTIONS

• SKYNET considers parameters a to be random variables with a log-posterior

lnP(a;α,σ) = lnL(a;σ) +
α

2

∑
i

a2
i ,

where hyperparameters σ describe rms of outputs and α is regulariser

• For regression problems, SKYNET assumes standard χ2 misfit

logL(a;σ) = −
K log(2π)

2
−

N∑
i=1

log(σi)−
1

2

K∑
k=1

N∑
i=1

t(k)
i − yi(x (k);a)

σi

2

,

• For classification problems, SKYNET again uses continuous, interpreted as
probabilities that inputs belongs to a particular output class. First softmax outputs:

yi(x
(k);a)→

exp[yi(x
(k);a)]∑N

j=1 exp[yj(x (k);a)]
,

then log-likelihood is cross-entropy of targets and softmaxed output values

logL(a;σ) = −
K∑
k=1

N∑
i=1

t
(k)
i log yi(x

(k);a),
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NETWORK TRAINING: SKYNET APPROACH

• NN training typically performed using backpropagation: first-order gradient
optimisation of log-likelihood lnL(a) (with fixed σ)⇒ convergence problems

• SKYNET takes very different approach:
– whitening of input/output values
– pre-training using layer-by-layer restricted Boltzmann machine contrastive

divergence optimisation⇒ parameters a ‘close’ to ‘good’ optimum
– optimisation using second-order truncated Newton method, but without need to

calculate or store Hessian
– automated updating of hyperparameters σ and α

• Combination of all the above methods
⇒ avoids poor local optima
⇒ practical use of second-derivative information even for large networks
⇒ significantly improves rate of convergence to good optimum
⇒ able to train large and/or deep networks (unlike backpropagation)

• Also, after training, SKYNET has fast algorithm to calculate accuracy of network’s
predicted outputs
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NETWORK TRAINING: CONVERGENCE

• Following each iteration, the posterior, likelihood, correlation, and error squared
values are calculated both for the training data and for the validation data

• Correlation of network outputs is defined for each output i as

Corri(a) =

∑K
k=1 (t(k)

i − ti)(yi − yi)√∑K
k=1 (t(k)

i − ti)2∑K
k=1 (y(k)

i − yi)2
,

where ti and yi are means of these output variables over all training data
– provides relative measure of how well predicted outputs match true ones
– correlations from each output can be averaged to give overall correlation

• Average error-squared of network outputs is defined by

ErSq(a) =
1

NK

K∑
k=1

N∑
i=1

[
t
(k)
i − yi(x(k); a)

]2
,

and is complementary to correlation, since it is an absolute measure of accuracy

35



NETWORK TRAINING: CONVERGENCE. . .

• As optimisation proceeds, there is a steady increase in posterior, likelihood,
correlation, and negative of error squared, both for the training and validation data

• But, eventually algorithm will begin
to overfit ⇒ continued increase of
these quantities for training data,
but decrease for validation data

• This divergence in behaviour is
taken as indicating that the algorithm
has converged and the optimisation
in terminated

• User may choose which of the four quantities is used to determine convergence.
The default the error squared (independent of hyperparameters σ and α)

• Also, correlation and error-squared provide quantitative measuresto compare
performance of different network architectures (no. of hidden nodes/layers)
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TOY EXAMPLE: REGRESSION

• Generate 200 points randomly in x ∈ [−5π,5π] and evaluate ramped sinc function

y(x) =
sin(x)

x
+ 0.04x,

then add Gaussian noise N (0,0.052) (prevents exact solution)

• Divide data (x, y) into 3 : 1 for training: validation and use 1 +N + 1 networks

• Astronomical applications: ellipticities of lensed galaxies, accelerated inference, . . .



TOY EXAMPLE: CLASSIFICATION

• 3-way classification problem proposed by Radford Neal:
– each of four variables x1, x2, x3, and x4 is drawn 1000 times from U[0,1]
– if distance between (x1, x2) and (0.4,0.5) is < 0.35⇒ point in class 0
– if 0.8x1 + 1.8x2 < 0.6⇒ point in class 1
– if neither of true⇒ point in class 2
– Gaussian noise N (0,0.12) then added to input values
– note values of x3 and x4 play no part in classification

• Divide data into 3 : 1 for training:
validation and consider networks
4 +N + 3. Final class assigned is
output with largest probability

38



TOY EXAMPLE: CLASSIFICATION. . .

• For network with N = 8 hidden nodes, 87.8% of training data points and 85.4%
of validation data points were correctly classified

• Compares well with Neal’s own original results and are similar to classifications
based on applying original criteria directly to data points after noise added

• Astronomical applications: SNe typing, gamma-ray burster identification, . . . 39



Combining nests and nets: BAMBI
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BAYESIAN STATISTICS AND COSMOLOGY

• Typical example: standard CMB data analysis pipeline
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• Note parameter numbers: map (∼ 107), power spectrum (∼ 103),
cosmological parameters (∼ 10), cosmological models (∼ 1) 41



BLIND ACCELERATED MULTIMODAL BAYESIAN INFERENCE (BAMBI)

• General Bayesian inference engine with wide applicability: only requires choice of
priors on the parameters in model (Graff et al., arXiv:1110.2997)

• Combines neural networks (SkyNet – a new, general-purpose, standalone NN
training code) and nested sampling (MULTINEST) in complementary manner

• Basic idea is as follows:

– early stage (prior-driven) nested samples⇒ (incremental) training data set

– simultaneous training of neural network(s)⇒ ‘learn’ likelihood function

– clustering in nested sampler⇒ accelerates network training

– once trained, network(s) replace(s) likelihood code
⇒ completes posterior sampling and evidence evaluation extremely rapidly

– trained likelihood network(s) available for subsequent analyses

42



OUTLINE OF BAMBI APPROACH
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ADVANTAGES OF BAMBI

• For primary analysis, typically ∼ 1.5 times faster than MULTINEST alone
⇒ modest gain in speed over MULTINEST and get trained networks as a bonus

• Automated training of network(s) over the entire parameter space
– Can also obtain gradients of likelihood from trained network(s)

• For subsequent (secondary) analyses:
– Likelihood calls from trained networks(s) require ∼ 10−4 sec⇒ huge speed-ups

(much faster network error calculation – new feature relative to published version)
– May use different (smaller) priors
– Ideal for e.g. coverage studies
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APPLICATION OF BAMBI: COSMOLOGY

• Analysis of non-flat ΛCDM model with CMB and LSS data

• MULTINEST results in solid (black) and BAMBI in dashed (blue)

• Log-evidence from BAMBI accurate to within 0.1 units

• BAMBI speed-up: primary analysis ∼ 1.5, subsequent analyses ∼ 104−5
45



APPLICATION OF BAMBI: PARTICLE PHYSICS

• Consider restricted class of SUSY models with certain universality assumptions
regarding SUSY breaking parameters: cMSSM (8-D parameter space)

• Total speed-up of analysis by factor ∼ 106

⇒ original SOFTSUSY + MCMC = 720 CPU days; BAMBI = 1 minute
46



And now for something completely
different. . .

. . . Autoencoders

47



AUTOENCODERS

• Autoencoders are a specific type of feed-forward NN, where the inputs are mapped
to themselves, i.e. the network is trained to approximate the identity operation

• Typically contain several hidden layers
and are symmetric about a central layer
containing fewer nodes than inputs

• Can be considered as two half-networks:
the ‘encoder’ and ‘decoder’ map either
to or from a reduced set of ‘feature vari-
ables’ embodied in central layer nodes

• Feature variables are, in general, non-linear functions of the original input variables

• Determine dependence for each feature variable in turn simply by decoding
(z1,0,0, . . . ,0), (0, z2,0, . . . ,0), etc. as corresponding zi value is varied
⇒ maps out a curve in the original data space

• Conversely, (z1, z2, . . . , zM) in central layer is feature vector of the input data
48



AUTOENCODERS. . .

• Autoencoders (AEs) thus provide a
very intuitive approach to non-linear
dimensionality reduction

• Constitute a natural generalisation of linear methods such as PCA and ICA, which
are widely used in astronomy. Indeed, an antoencoder with a single hidden layer
and linear activation functions is identical to PCA.

• Encoding from input data to feature variables also useful in clustering tasks

• Autoencoders are, however, notoriously difficult to train, since objective function
contains a broad local maximum where all outputs = average value of the inputs,
but can be overcome with pre-training methods
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DIMENSIONALITY REDUCTION USING AUTOENCODERS

• Dimensionality reduction is a very common task in astronomy. Antoencoders
provide a natural non-linear generalisation of PCA and ICA, which reduces to PCA
in the special case of a single hidden layer and linear activation functions

• 2-D Gaussian data (x1, x2) using 2 + 1 + 2 autoencoder

• Output curve traced in data space as
one varies feature value z1

• Approximates eigenvector with larger
eigenvalue of data covariance matrix
• Dimensionality reduction performed

conversely by (non-linear) encoding of
each input (x1, x2) to obtain z1

• Error-squared and correlation for an-
toencoder are 0.476 and 90.5%
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DIMENSIONALITY REDUCTION USING AUTOENCODERS. . .

• 2-D Gaussian data (x1, x2) using 2 + 2 + 2 autoencoder (so no dimensionality
reduction)

• Curves traced out as one varies fea-
ture values (z1,0) and (0, z2)

• Approximate both eigenvectors of
data covariance matrix
• Error-squared and correlation for an-

toencoder are 0.022 and 99.8%

• Note that error-squared and correlation very close to perfect, as one would expect
for this two-dimensional data set
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DIMENSIONALITY REDUCTION USING AUTOENCODERS. . .

• Data (x1, x2) distributed about a partial ring⇒ long curving degeneracy:

x1 = 0.5 + (0.5− n) cos θ, (1a)
x2 = 0.5 + (0.5− n) sin θ, (1b)

where θ ∼ U(0.1π,1.9π) and n ∼ N (0,0.12).

• Train deeper autoencoders with architecture 2 +N + 1 +N + 2:
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DIMENSIONALITY REDUCTION USING AUTOENCODERS. . .

• For autoencoder with architecture 2 + 13 + 1 + 13 + 2:

• PCA is unable to represent this data set accurately in a single component. Indeed,
dominant principal component lies along straight, horizontal (symmetry) line

• Projections onto dominant principal component do not distinguish between data
points having same x1-coordinate, but lying on opposite sides of symmetry line
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DIMENSIONALITY REDUCTION USING AUTOENCODERS. . .

• Data (x1, x2) drawn from sum of four equal Gaussians⇒ multimodal distribution

• For autoencoder with architecture 2 + 10 + 1 + 10 + 2:

• PCA is unable to represent data in single component. Indeed, two principal
directions (with ∼ equal eigenvalues) lie along diagonal (symmetry) lines at ±45◦

• Projections onto line at +45 degrees (say)⇒ conflate modes 1 and 4
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MNIST HANDWRITING RECOGNITION

• MNIST database: 60,000 training, 10,000 validation images of handwritten digits

• Each digit has been size-normalised and centred in 28× 28 pixel greyscale image

• Data set has become a standard for testing of machine-learning algorithms
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MNIST HANDWRITING RECOGNITION. . .

• Perform massive compression to just two feature variables by training very large
and deep autoencoder with hidden layers
1000 + 500 + 250 + 2 + 250 + 500 + 1000 (and 784 inputs/outputs)⇒
simple illustration of clustering

• There is significant overlap be-
tween digits with similar shapes,
but some digits do occupy distinct
regions of the feature vector space
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MAPPING DARK MATTER CHALLENGE

• Mapping Dark Matter (MDM) Challenge was presented on www.kaggle.com as a
simplified version of GREAT10 Challenge

• Each data item consists of two 48× 48 greyscale images of a galaxy and a star
– each pixel value is Poisson distributed with mean equal to underlying intensity
– both images convolved with same, but unknown, point spread function
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MDM CHALLENGE. . .

• Perform image compression and denoising using dimensionality reduction

• Train autoencoder on MDM full galaxy and cropped star images
(48× 48 + 24× 24 = 2880 pixels) with architecture 2880 +N + 2880.
Determine N ∼ 10 automatically (as before)⇒ massive compression
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MDM CHALLENGE. . .

• Can determine feature vectors by decoding unit inputs to each hidden layer node
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CONCLUSIONS

• Neural networks are an intuitive and useful approach to machine-learning

• Can be used for regression, classification, dimensionality reduction, clustering,
accelerated inference, and much more. . .

• SKYNET is an efficient and robust generic NN training tool

• BAMBI combines nets and nests⇒ generic approach to accelerated Bayesian
inference, already applied in many areas, giving overall speed-up ∼ 106

compared to standard MCMC and original likelihoods (in cosmology)

• MULTINEST (arXiv:0809.3437), www.mrao.cam.ac.uk/software/multinest
SKYNET (arXiv:1309.0790), www.mrao.cam.ac.uk/software/skynet
BAMBI (arXiv:1110.2997), www.mrao.cam.ac.uk/software/bambi

• Autoencoders are interesting and may be useful in astronomy and beyond. . .
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