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Fundamentals of DSP
3

It seems hard to formulate a linear shift-invariant systems theory 
(LTI) for graphs. But we can try to get close.

The (combinatorial) Laplacian will be our main building block

That particular ortho basis will play the role of the Fourier basis

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . .  �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
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X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:
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We can also write the filter in matrix form as f
out

= Hf
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where H is a matrix function [14]
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where ˆh(⇤) is a diagonal matrix with the elements of the
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. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �
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, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
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1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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g0(n) :=
N�1X

`=0

u`(n)

(f ⇤ g)(n) :=
N�1X

`=0

f̂(`)ĝ(`)u`(n)

(Tif)(n) :=
p
N(f ⇤ �i)(n) =

p
N

N�1X

`=0

f̂(`)u⇤
` (i)u`(n)

Kernels, Convolutions and Translations
5

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)
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Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
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convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
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Use convolution to induce translations



�n(m) =
�
Tng

�
(m) �n(m) =

p
N

N�1X

`=0
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|ĝ(K+1)(x)|

Suppose the GFT of the kernel is smooth enough (K+1 different.):

sup
`
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Regular Kernels are Localized

If the kernel is d(i, n)-times di↵erentiable:



Example: for the heat kernel ĝ(�) = e�⌧�
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ĝ(⇠)e�2⇡i⇠se2⇡i⇠td⇠

(Tng)(i) :=
N�1X

`=0
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ĝ(�`)u
⇤
` (n)u`(i)

http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS2) !
http://lts2.epfl.ch

l Generalized translation
‣ Classical setting:

‣Graph setting:

Localization in action
9

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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Remark on Implementation
12

Not necessary to compute spectral decomposition for filtering

Polynomial approximation :

ex: Chebyshev, minimax

g(t�) �
K�1�

k=0

ak(t)pk(�)

W̃f (tn, j) =

�
1
2
cn,0f

# +
Mn⇤

k=1

cn,kT k(L)f#

⇥

j

T k(L)f =
2
a1

(L� a2I)
�
T k�1(L)f

⇥
� T k�2(L)f

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix. In particular

http://wiki.epfl.ch/sgwt

http://wiki.epfl.ch/sgwt
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Downsampling
14

4

(a) (b)

(c) (d)

(e)

Fig. 1. Examples of partitioning structured graphs into two sets (red and blue)
according to the polarity of the largest eigenvector of the graph Laplacian. For
the path graph in (a) and the ring graph in (b), the method selects every other
vertex like classical downsampling of discrete-time signals. For the finite grid
graphs with the ends unconnected (c) and connected (d), the method results
in the quincunx sampling pattern. For a tree graph in (e), the method groups
the vertices at every other depth of the tree.

Aspvall and Gilbert [21] suggest to construct an approx-
imate 2-coloring of an unweighted graph according to the
polarity of the eigenvector associated with the most negative
eigenvalue of the adjacency matrix. For regular graphs, the
eigenvector associated with the most negative eigenvalue of
the adjacency matrix is the same as the largest graph Laplacian
eigenvector, and so the the method of [21] is equivalent to the
largest Laplacian eigenvector method for that special case.

D. Connections with Nodal Domain Theory
A nodal domain of f on G is a maximally connected

subgraph of G such that the sign of a signal f is the same
on all vertices in the subgraph. It is typical to distinguish
between two types of nodal domains on graphs [17, Chapter
3]. A positive (negative) strong nodal domain of f on G is a
maximally connected subgraph such that f(i) > 0 (f(i) < 0)
for all vertices i in the subgraph. A positive (negative) weak
nodal domain of f on G is a maximally connected subgraph
such that f(i) � 0 (f(i)  0) for all vertices i in the subgraph,
with f(i) 6= 0 for at least one vertex i in the subgraph. The
number of weak nodal domains of a function f on a graph
G is always less than or equal to the number of strong nodal
domains of f on G. An example where the number of weak
nodal domains is strictly less is shown in Figure 2.

A graph downsampling can be viewed as an assignment
of positive and negative signs to vertices, with positive signs
assigned to the vertices that we keep, and negative signs to
the vertices that we eliminate. The goal of having few edges

+0 –– +

–

+

Fig. 2. Nodal domain example from [17, Figure 3.4]. The figure shows
the sign pattern of an eigenvector associated with the eigenvalue �

5

of the
Laplacian of the graph shown. This eigenvector has 5 weak nodal domains
and 6 strong nodal domains.

within either the removed set or the kept set is closely related
to the problem of maximizing the number of nodal domains
of the downsampling. This is because maximizing the number
of nodal domains leads to nodal domains with fewer vertices,
which results in fewer edges connecting vertices within the
removed and kept sets.

Next, we briefly mention some general bounds on the
number of nodal domains of functions on a given graph G.

(ND1) For any function f on G, the number of strong and weak
nodal domains of f on G is less than or equal to N��+2

[23, Theorem 3.3]
(ND2) If and only if G is bipartite does there exist an f such

that the number of strong and weak nodal domains of f
on G is equal to N

Since we suggest to use the largest eigenvector for down-
sampling, we also mention some bounds on the number of
nodal domains of eigenvectors of graph Laplacians. Let u

`

be the eigenvector associated with the `th eigenvalue of a
generalized Laplacian of a connected graph G. Then

(ND3) u
`

has at most ` weak nodal domains and `+s�1 strong
nodal domains, where s is the multiplicity of �

`

[24], [17,
Theorem 3.1]

(ND4) The largest eigenvector u
max

has N strong and weak
nodal domains if and only if G is bipartite. Moreover, if
H is a bipartite subgraph of G with the maximum number
of vertices, then the number of vertices in H is an upper
bound on the number of strong nodal domains of any
eigenvector of a generalized Laplacian of G [17, Theorem
3.27]

(ND5) If u
`

(i) 6= 0, 8i 2 V , then u
`

has at most ` nodal
domains3 [17, Corollary 3.21]

(ND6) If �
`

is simple and u
`

(i) 6= 0, 8i 2 V , the number of
nodal domains of u

`

is greater than or equal to ` � r,
where r is the number of edges that need to be removed
from the graph in order to turn it into a tree4[25]

Note that while both the lower and upper bounds on
the number of nodal domains of the eigenvectors of graph
Laplacians are monotonic in the index of the eigenvalue, the
actual number of nodal domains is not always monotonic in the
index of the eigenvalue (see, e.g., [23, Figure 1] for an example
where they are not monotonic). Therefore, for arbitrary graphs,
it is not guaranteed that the largest eigenvector of the graph

3When u
`

(i) 6= 0, 8i 2 V , as in (ND5) and (ND6), the number of weak
and strong nodal domains are equal, so we do not specify a particular type
of nodal domain.

4Berkolaiko proves this theorem for Schrödinger operators, which encom-
pass generalized Laplacians of unweighted graphs.

3

with edges of high weight; i.e., if i, j 2 V
1

, then W
ij

is
low, and if i, j 2 Vc

1

, then W
ij

is low
(D3) There is a computationally efficient way to implement

it

A. Vertex Selection Using the Largest Eigenvector of the
Graph Laplacian

The method we suggest to use for graph downsampling is
to select the vertices to keep based on the polarity of the
components of the largest eigenvector; namely, let

V
1

= V
+

:= {i 2 V : u
max

(i) � 0} . (5)

We refer to this method as the largest eigenvector vertex
selection method. A few remarks regarding this choice of
downsampling operator are in order. First, the polarity of
the largest eigenvector splits the graph into two components.
In this paper, we choose to keep the vertices in V

+

, and
eliminate the vertices in V� := {i 2 V : u

max

(i) < 0}, but
we could just as easily do the reverse, or keep the vertices
in V

big

:= argmaxV
1

2{V
+

,V�}|V1

|, for example. Second, for
some graphs such as the complete graph, �

max

is a repeated
eigenvalue, so the polarity of u

max

is not uniquely defined.
Third, we could just as easily base the vertex selection on the
polarity of the normalized graph Laplacian eigenvector, ˜u

max

associated with the largest eigenvalue, ˜�
max

. In some cases,
such as the bipartite graphs discussed next, doing so yields
exactly the same selection of vertices as downsampling based
on the largest non-normalized graph Laplacian eigenvector;
however, this is not true in general.

In the following sections, we motivate the use of the largest
eigenvector of the graph Laplacian from two different perspec-
tives - first from a more intuitive view as a generalization of
downsampling techniques for special types of graphs, and then
from a more theoretical point of view by connecting the vertex
selection problem to graph coloring, spectral clustering, and
nodal domain theory.

B. Special Case: Bipartite Graphs

There is one situation in which there exists a fairly clear
notion of removing every other component of a graph signal
– when the underlying graph is bipartite. A graph G =

{V, E ,W} is bipartite if the set of vertices V can be par-
titioned into two subsets V

1

and Vc

1

so that every edge e 2 E
links one vertex in V

1

with one vertex in Vc

1

. In this case, it
is natural to downsample by keeping all of the vertices in one
of the subsets, and eliminating all of the vertices in the other
subset. In fact, as stated in the following theorem, the largest
eigenvector downsampling method does precisely this in the
case of bipartite graphs.

Theorem 1 (Roth, 1989): For a connected, bipartite graph
G = {V

1

[Vc

1

, E ,W}, the largest eigenvalues, �
max

and ˜�
max

,
of L and ˜L, respectively, are simple, and ˜�

max

= 2. Moreover,
the polarity of the components of the eigenvectors u

max

and
˜u
max

associated with �
max

and ˜�
max

both split V into the

bipartition V
1

and Vc

1

. That is, for v = u
max

or v =

˜u
max

,

v(i)v(j) > 0, if i, j 2 V
1

or i, j 2 Vc

1

, and
v(i)v(j) < 0, if i 2 V

1

, j 2 Vc

1

or i 2 Vc

1

, j 2 V
1

. (6)

If, in addition, G is k-regular (d
i

= k, 8i 2 V), then �
max

=

2k, and

u
max

=

˜u
max

=

(

1p
N

, if i 2 V
1

� 1p
N

, if i 2 Vc

1

.

The majority of the statements in Theorem 1 follow from
results of Roth in [16], which are also presented in [17,
Chapter 3.6].

The path, ring (with an even number of vertices), and finite
grid graphs, which are shown in Figure 1, are all examples
of bipartite graphs and all have simple largest graph Lapla-
cian eigenvalues. Using the largest eigenvector downsampling
method leads to the elimination of every other vertex on the
path and ring graphs, and to the quincunx sampling pattern on
the finite grid graph (with or without boundary connections).

Trees (acyclic, connected graphs) are also bipartite. An
example of a tree is shown in Figure 1(e). Fix an arbitrary
vertex r to be the root of the tree, let Y0

r

be the singleton
set containing the root, and then define the sets {Yt

r

}
t=1,2,...

by Yt

r

:= {i 2 V : i is t hops from the root vertex r in T }.
Then the polarity of the components of largest eigenvector
of the graph Laplacian splits the vertices of the tree into two
sets according to the parity of the depths of the tree. That is,
if we let Yeven

r

:= [
t=0,2,...

Yt

r

and Yodd

r

:= [
t=1,3,...

Yt

r

, then
Yeven

r

= V
+

and Yodd

r

= V�, or vice versa.
In related work, [18] and [19] suggest to downsample

bipartite graphs by keeping all of the vertices in one subset
of the bipartition, and [20] suggests to downsample trees by
keeping vertices at every other depth of the tree. Therefore,
the largest eigenvector downsampling method can be seen as
a generalization of those approaches.

C. Connections with Graph Coloring and Spectral Clustering

A graph G = {V, E ,W} is k-colorable if there exists a
partition of V into subsets V

1

,V
2

, . . . ,V
k

such that if vertices
i, j 2 V are connected by an edge in E , then i and j are in
different subsets in the partition. The chromatic number � of
a graph G is the smallest k such that G is k-colorable. Thus,
the chromatic number of a graph is equal to 2 if and only if
the graph is bipartite.

As we have seen with the examples in the previous section,
when a graph is bipartite, it is easy to decide how to split it
into two sets for downsampling. When the chromatic number
of a graph is greater than two, however, we are interested in
finding an approximate coloring [21]; that is, a partition that
has as few edges as possible that connect vertices in the same
subset.2 As noted by [21], the approximate coloring problem
is in some sense dual to the problem of spectral clustering
(see, e.g. [22] and references therein).

2In other contexts, the term approximate coloring is also used in reference
to finding a proper k-coloring of a graph in polynomial time, such that k is
as close as possible to the chromatic number of the graph.

Relaxed solution to 2-coloring for regular graphs

Exact for bipartite graphs

Connections with nodal domains theory for  
laplacian eigenvectors
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upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking di�erence of the original signal and the
output of the second filter.

Consider an input graph-signal x ⇤ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn�1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(�l)}n�1

l=0 and
o�-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ ⇥ R+.

The output of the highpass channel is then given by y1 = x�Gy0 which
is equal to the reconstruction error.

y1 = x�Gx

= x�VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(�l)}n�1

l=0 and o�-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ ⇥ R+.

The analysis operator Ta is then defined in

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

=

�
Hm

I�GHm

⇥

⇧ ⌅⇤ ⌃
Ta

x, (5.3)

where y0, y1 ⇤ Rn are the coarse and prediction error coe⇤cients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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TsTa = I

Simple (traditional) left inverse

Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

x̂ = ( G I )⇧ ⌅⇤ ⌃
Ts

�
y0

y1

⇥

⇧ ⌅⇤ ⌃
y

. (5.4)

First, we predict the original signal by filtering of the coarse version y0 and
add the reconstruction error y1 to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsTa = I for any Hm,G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hm,G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

Ta
† = (Ta

TTa)
�1Ta

T . (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coe⇤cients y
and are orthogonal to the range of the analysis operator Ta. So, if instead of
having access to y = Tsx we have ŷ = y+e, then the pseudo inverse provides
the solution x̂ = Ta

†ŷ that minimizes the residual ||Tax̂� ŷ||2.
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with no conditions on H or G
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Coarsening by Kron Reduction
18

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

2 F. Dörfler and F. Bullo

is the loopy Laplacian matrix. In various applications of circuit theory and related
disciplines it is desirable to obtain a lower dimensional electrically-equivalent network
from the viewpoint of certain boundary nodes (or terminals) � � {1, . . . , n}, |�| ⌅ 2.
If ⇥ = {1, . . . , n}\� denotes the set of interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

�
I�
I⇥

⇥
=

�
Q�� Q�⇥

Q⇥� Q⇥⇥

⇥ �
V�

V⇥

⇥
. (1.1)

Gaussian elimination of the interior voltages V⇥ in equations (1.1) gives an electrically-
equivalent reduced network with |�| nodes obeying the reduced current-balances

I� +QacI⇥ = QredV� , (1.2)

where the reduced conductance matrixQred ⇧ R|�|⇥|�| is again a loopy Laplacian given
by the Schur complement of Q with respect to the interior nodes ⇥, that is, Qred =
Q���Q�⇥Q

�1
⇥⇥Q⇥�. The accompanying matrix Qac = �Q�⇥Q

�1
⇥⇥ ⇧ R|�|⇥(n�|�|) maps

internal currents to boundary currents in the reduced network. In case that I⇥ is the
vector of zeros, the (i, j)-element of Qred is the current at boundary node i due to a
unit potential at boundary node j and a zero potential at all other boundary nodes.
From here the reduced network can be further analyzed as an |�|-port with current
injections I� +QacI⇥ and transfer conductance matrix Qred.

This reduction of an electrical network via a Schur complement of the associated
conductance matrix is known as Kron reduction due to the seminal work of Gabriel
Kron [37], who identified fundamental interconnections among physics, linear algebra,
and graph theory [33, 38]. The Kron reduction of a simple tree-like network with-
out current injections or shunt conductances is illustrated in Figure 1.1, an example
familiar to every engineering student as the Y �� transformation.

8

8

8
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Fig. 1.1. Kron reduction of a star-like electrical circuit with three boundary nodes ⇥�, one
interior node •⇥ , and with unit conductances resulting in a reduced triangular reduced circuit.

Literature Review. The Kron reduction of networks is ubiquitous in circuit
theory and related applications in order to obtain lower dimensional electrically-
equivalent circuits. It appears for instance in the behavior, synthesis, and analysis of
resistive circuits [56, 60, 59], particularly in the context of large-scale integration chips
[48, 53, 1]. When applied to the impedance matrix of a circuit rather than the admit-
tance matrix, Kron reduction is also referred to as the “shortage operator” [2, 3, 35].
Kron reduction is a standard tool in the power systems community to obtain station-
ary and dynamically-equivalent reduced models for power flow studies [58, 10, 61], or
in the reduction of di⇥erential-algebraic power network and RLC circuit models to
lower dimensional purely dynamic models [45, 52, 5, 18, 20]. A recent application of
Kron reduction is monitoring in smart power grids [17] via synchronized phasor mea-
surement units. Kron reduction is also crucial for reduced order modeling, analysis,

Schur complement
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Reduction-aware interpolation
19

Idea: Optimize interpolation for reduction:

Shifted Green’s function of L at vertex v

y1

y
low

H D

U

G

-x

Interpolation



Spline-like interpolation
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With:

Simple linear model:



Spline-like interpolation
20

With:

Simple linear model:

On the known vertices:

Solution depends on efficient, robust inversion of:

Interpolation condition:

Those weights can be computed using only filtering !



Spline-like interpolation
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Stable pseudo-inverse:

Regularized Laplacian:



Spline-like interpolation
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Stable pseudo-inverse:

Shifted Green’s functions

Regularized Laplacian:



Spline-like interpolation
21

Stable pseudo-inverse:

Shifted Green’s functions

Does this property carry over to the Kron reduced Laplacian?

Note:

Regularized Laplacian:



Spline-like interpolation
22

Lemma: Inversion/Reduction commute for the (regularized) Laplacian

This implies invariance of the Green’s functions via reduction and therefore



Spline-like interpolation
22

Lemma: Inversion/Reduction commute for the (regularized) Laplacian

This implies invariance of the Green’s functions via reduction and therefore

Algorithm: Reduce graph
Apply reduced Laplacian to vertex data

Replace old data with newly calculated coefficients

Filter with Green’s kernel
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EPFL – Signal Processing Laboratory (LTS2) !
http://lts2.epfl.ch

Outlook
25
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David Shuman Signal Processing on Graphs February 11, 2013 14 / 35• Application of graph signal processing techniques to real science and 
engineering problems is in its infancy  

• Theoretical connections between classes of graph signals, the underlying 
graph structure, and sparsity of transform coefficients

http://lts4.epfl.ch
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