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Istory of Hydrogen

What is the Reionization Era?
A Schematic Outline of the Cosmic History
Time since the <« The Bng Bang
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~ 13 billion ) Today: Astronomers
figure it all out!



Cosmological 21cm
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e 2lcm line is the transition between parallel and anti-

parallel spins in the H ground state

e The ratio between the two occupancies determines the

spin temperature T’

n1/no = (91/90) exp(=T%/Ts)

e We can observe the contrast relative to the CMB
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Traditional survey

e Detect all galaxies

with high
significance.

e Take spectra to
determine redshift

Only interested
in large scales

Redshift z



Intensity Mapping

e Observe galaxies with

a line transition

e Automatically gives

redshift

Don’t need to
resolve individual
galaxies

0.00 0.05 0.10 Chang et al, 2008; Wyithe and Loeb 2008
Redshift z



21cm Intensity Mapping

e In 21cm the frequency gives the redshift.

e Observe the diffuse emission from many unresolved
galaxies

e Changes the game in telescope design:

» Previously: large field of view, large collecting area, large angular
resolution (SKA?)

» Now: large field of view, large collecting area, modest angular
resolution (compact arrays, single dishes).

Chang, Pen, Peterson and McDonald , 2008, http://arxiv.org/pdf/0709.3672



http://arxiv.org/pdf/0709.3672

Traditional Interferometer

Small field of view
High resolution imaging




Survey Interferometers —__—
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Large field of view
Low resolution surveys




21cm Drift Scan Interferometers

e Transit instrument, no moving parts, time variation comes
only from Earth rotation, plus noise.

e Most experiments have large challenges:

» Wide field at given instant (~ 180 x I degrees)

» All sky as total surveyed area is large (37 sr)

» Datavolume (many TB/day)
» Polarisation leakage

» Foreground removal




Interferometers
Ap =217 - dyj /)

. advancing
0 wave crests

e Visibility is instantaneous
correlation of 2 antennas

Vij = <FZFJ*>

e Written explicitly:

1 3
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e Traditional analysis approximates
this to a 2D Fourier transform and
proceeds from there.



Interferometers

e Write in terms of a beam transfer function:
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Transit Interferometers

e Timeseries is periodic on the sidereal day ¢ — ¢

» Apply this restriction and see how the analysis goes.
Vij(0) = [0 By (i 0)T(R) + iy (0
Spherical
Harmonic
Transform
VY(¢) = By (¢)aly, +n"(¢)
Im

l Fourier Transform

ij 1) T 1)
V7 = E B2 aj,, +n,;
[



m-mode transform

Mapping does not mix m’s (each is independent)
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Write in vector form

Simple,

v=Ba+n.

linear mapping from the information on

the sky, to the measured degrees of freedom

Discrete relation, with finite number of degrees, can

apply a

| the standard statistical, signal processing

technic

ues to it.

Computationally efficient: For 1000 m's an O(N?3)

matrix

operation becomes 10° times faster



Polarisation

e Extends easily to polarisation. Measurement equation:

V(o) = [ [BEG )T + B 0)Q(0)

+BY (8 ¢)U () | 46 + n5(9)
e Transfer function:
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e m-mode map:
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Interferometric Imaging

e Traditional imaging is based around the 2D Fourier
Transform approximation to the measurement equation
(only valid on small patches instantaneously)

e Use a series of steps to relax this approximation and
increase field of view (w-projection, mosaicking, A-
projection)

» eg. w-term. From non coplanarity of array and sky. Solve by
iteratively deconvolving the effects

V = /dxdyAz(:B,y)e%i(““"’y*“’\/1_5’72_92)](%y)



m-mode Imaging

e For our restricted domain (transit telescopes), we can solve
the problem exactly.

e Measurement is linear mapping:
v=Ba+n.
e How do we make an image of the sky? Use standard tools of
signal processing:
» Pseudo-inverse to solve and regularize (maximum likelihood)

» Wiener Filter (Bayesian expectation)

e Conceptually straightforward. Deals naturally with all full
sky eftects, polarisation etc.
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Foreground Challenges

440
f ‘ }
0 “‘}‘J i
N430 \, ‘ ‘
= '.\0' )4 '\1' '
< “"JH'I, ")

00,5750 55 60 ' ~85 90

¢ / degrees

Cosmological 21cm Signal ~ 1mK



Foreground Challenges
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Foreground Removal

e Spectral smoothness allows separation of 21cm

» Measure components and model (Liu, Dillon etc.)

» Power spectrum removal (Foreground wedge)

» Delay-space filtering (Parsons et al. 2012)

e Most methods have difficulties:

4

Mode mixing of angular and frequency fluctuations by frequency-
dependent beams (esp. interferometers)

Robustness Biasing introduced if foreground model poorly
understood (esp. non-gaussianities)

Statistical Optimality Need to keep track of transformations on
statistics, for optimal PS estimation

Polarisation leakage mixes fluctuations from polarised foreground



Signal to Noise Eigenmodes

e Old CMB idea - E/B mode separation (Bunn et al. 2003)
e An optimal treatment - m-modes makes it feasible.

e Construct the covariances of the signal and foregrounds in
the measured basis

S =(ss") =B (alal ) B F=8B <afa}> BT
e Jointly diagonalise both (eigenvalue problem)
Sx = A\Fx

e Gives a new, uncorrelated basis. Corresponding eigenvalue
gives the expected signal to foreground power ratio.
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Signal/Foreground Ratio
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Foreground Removal with S/N modes

e Foreground removal is performed by projecting out modes
with low signal-to-foreground ratio.

e Robustness to model
conservatively large t

uncertainties by choosing a
reshold; we would prefer to increase

our errors bars in order to remove bias.

e Addresses the previous problems

» Analysis uses all measured data to avoid mode mixing.

» Can be made arbitrarily robust - increase threshold for removal

» Linear transformation in the data space, keeps track of statistics
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Observed
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S/F > 0.01
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Summary

e Unconventional interferometers need unconventional data
analysis:

» m-mode transform is a promising method for analysing wide
field interferometric data

» Enable the use of Signal-to-Noise eigenmodes for foreground
removal

» Similar advantages for power spectrum estimation



