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Past work in spherical harmonics

• Radial transformation of RF feed horn patterns — radio astronomy
cassegrain reflector systems (ATNF)

• Broadband and near-field arrays and beamforming — audio/acoustic
applications

• Head-related transfer functions (HRTF) — hearing

• 3D-audio surround sound encoding and reproduction — multi
eigen-channel rather than multi-channel

• 3D-audio microphone capture — spherical microphones

• MIMO (multi-antenna) communication channel modelling — 3D modal
multipath modeling

Led to interest in generic spherical methods with many applications and
trawling SP and IT methods for spherical signal applications.

• Slepian 1960s — Slepian on Sphere 1990’s

• Time-frequency Methods — linear and Wigner-Ville (Cohen)

• Signals and Systems — functions and operators
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Spherical Harmonic Transform (SHT)

spatial in L2(S2) −→ spectral in ` 2

For a complex-valued spatial signal on the 2-sphere, f(x̂), the Spherical
Harmonic Transform (SHT) is given by

(f)
m
` := 〈f, Y m

` 〉 =
∫

S2
f(ŷ)Y m

` (ŷ) ds(ŷ).

This is the natural Fourier transform on the sphere.
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Inverse Spherical Harmonic Transform (ISHT)

spatial in L2(S2)←− spectral in ` 2

The Inverse Spherical Harmonic Transform (ISHT) is given by

f(x̂) =

∞∑

`=0

∑̀

m=−`

(f)
m
` Y m

` (x̂),

where (f)
m
` := 〈f, Y m

` 〉. This is the inverse Fourier transform on the sphere.
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Spatially Localized SHT (SLSHT) I

spatial −→ (joint) spatio-spectral on S2 × Z

f(x̂) −→ g(x̂; `,m), using symmetric window h(x̂)

The spatio-spectral SLSHT [1, 2] was originally given by

g(x̂; `,m) :=

∫

S2

(
D(x̂)h

)
(ŷ)f(ŷ)Y m

` (ŷ) ds(ŷ), (1)

where h(ŷ) is an azimuthally symmetric window function satisfying

〈h, Y m
` 〉 = 0, ∀m 6= 0. (2)

(
D(x̂)h

)
(ŷ) is the window h(ŷ) rotated/centered about the point x̂ ∈ S2.
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Spatially Localized SHT (SLSHT) II

x y

z

ω = π

x y

z

ω = π

f(ŷ)
(
D(x̂)h

)
(ŷ)f(ŷ)
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Spatially Localized SHT (SLSHT) III

Why?

f(x̂) SLSHT transformation
inverse spatio-spectral

transform
d(x̂)

︸ ︷︷ ︸
spatial

︸ ︷︷ ︸
spatio-spectral

︸ ︷︷ ︸
spatial

SLSHD
modified
SLSHD
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Spatially Localized SHT (SLSHT) IV

∫

S2
f(ŷ)Y m

` (ŷ) ds(ŷ) SHT of f

∫

S2
h(ŷ) f(ŷ)Y m

` (ŷ) ds(ŷ) SHT of f with window

∫

S2

(
D(x̂)h

)
(ŷ)f(ŷ)Y m

` (ŷ) ds(ŷ) SHT of f with rotated window

∫

S2

(
D(x̂)h

)
(ŷ)f(ŷ)Y`m(ŷ) ds(ŷ) SLSHT spatio-spectral arguments

Evaluate this over all rotations x̂ and all spectral indices `,m and this gives you
a spatio-spectral domain representation of f

• parameterised by the window h

• analog of short-time Fourier Transform

• can generalise to directional windows and SO(3) rotations with “fast”
computational methods [3]

• information preserving with inverse (to recover f)

• spatio-spectral domain processing generally needs pseudo-inverse [4]
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Spatially Localized SHT (SLSHT) V

S2 × Z
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Spatially Localized SHT (SLSHT) VI

Insanity, really, . . .IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 3, MARCH 2012 1491

Fig. 4. Magnitude of components of SLSHT distribution in (7) of Mars topographic map . The distribution components are shown for
and in a sorted manner; that the degree increments from left to right, with the lowest degree is plotted on the top left and the highest degree

on the lower right. Blue indicates low magnitude while red indicates high magnitude.

The rectangular window has the poorest localization because the dis-
continuity at truncation points increases its variance in the spectral do-
main. As expected, the window in [2] performs very well in the spectral
domain, but poorly in the spatial domain. The figure also shows that the
Gaussian window and the eigenfunction window exhibit better local-
ization behavior. Comparatively, these two windows have the lowest
variances in both domains. Note that the smaller value for variance in-
dicates better localization. Fig. 1(c) confirms that both the eigenfunc-
tion window and the Gaussian window nearly attain the lower bound
of 1 for the uncertainty product of (19). The rectangular window has
the largest uncertainty product as expected. The product for other win-
dows, including the window in [2], lie between these two extremes.

The optimal truncation width depends on the required resolution in
both the spatial and spectral domains. As indicated in the variance plot
in Fig. 1, the spatial variance of eigenfunction window is very close
to that of Gaussian window. But the spectral variance of eigenfunc-
tion window is lower than that of Gaussian window, especially at lower
truncation widths. The Gaussian window and eigenfunction window
are plotted for truncation width in both spatial and spectral
domains in Fig. 2. Both windows are normalized to unit energy and

chosen such that 99% of energy lies within the truncation width. It
is observed that the eigenfunction window has smaller bandwidth and
its energy is more uniformly distributed relative to Gaussian window.
Thus, the eigenfunction window can be a good choice for window func-
tion in the SLSHT distribution.

It must be noted that compared to space-scale techniques, the
space-spectral resolution of the SLSHT is fixed for all spectral compo-
nents and spatial positions. Incorporating multi-resolution capability
in SLSHT is possible, but would require using different bandwidth
window functions for different SLSHT distribution components,
consideration of which is beyond the scope of this correspondence.
Finally, we remark that with appropriate modifications it is possible to
incorporate non-azimuthally symmetric windows into our formulation.

V. SIMULATION RESULTS

In this section, we demonstrate the spatially localized spherical har-
monics transform and our proposed window to study the signals in joint
spatio-spectral domain. We consider a Mars signal on the sphere that
has higher degree harmonic components in a localized mountainous
spatial region. We study the high resolution Mars topographic map
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Spatially Localized SHT (SLSHT) VII

∫

S2

(
D(x̂)h

)
(ŷ)f(ŷ)Y m

` (ŷ) ds(ŷ)

is not the best notation for the SLSHT because it really means two equations

g(x̂; `,m) :=

∫

S2

(
D(x̂)h

)
(ŷ)f(ŷ)Y m

` (ŷ) ds(ŷ),

where h(ŷ) is an azimuthally symmetric window function satisfying

〈h, Y m
` 〉 = 0, ∀m 6= 0.

• This symmetry isn’t well-exploited in the expression for the SLSHT.

• Two equations.

• SLSHT processing when using this formulation [4] isn’t intuitive.
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SLSHT Interpretation I

The spatio-spectral SLSHT g(x̂; `,m) has various interpretations. The
window h(x̂) is chosen to concentrate analysis into a local region on the sphere
centered on the point x̂:

• gx̂0
(`,m) := g(x̂0; `,m) — fixing the spatial x̂0 ∈ S2 and varying the

spectral degree ` and order m we get information of which spherical
harmonics contribute most to explain that localized portion of the
spatial signal f(x̂) within the windowed region; and

• g`0,m0(x̂) := g(x̂; `0,m0) — fixing both the spectral degree `0 and order
m0 and varying spatially x̂ ∈ S2 we can infer from which parts of the
sphere the signal most strongly contribute to the (global) spherical
harmonic coefficient.

• tears apart the spatial signal on the sphere S2 into a cartesian product
domain S2 × Z

• but not the only way to move the signal to a cartesian domain
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SLSHT Interpretation II

• Seems slightly different to short-time Fourier Transform where the cartesian
product domain is R× R for time-frequency. Somewhat symmetric, or
self-dual or something.

• For spatio-spectral SLSHT the two domains S2 and Z seem world’s apart.
(Here, recall, Z is the single countable indexing of degrees ` and orders m.)

• Let’s fix that.
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Kernel-Based Spatio-Spectral SLSHT

The Spatio-Spectral SLSHT [1] given by (1) and (2) can be written

g(x̂; `,m) =

∫

S2
H(x̂ · ŷ)f(ŷ)Y m

` (ŷ) ds(ŷ), (3)

where the kernel is

H(x̂ · ŷ) :=
∞∑

`=0

(h)0`

√
2`+ 1

4π
P`(x̂ · ŷ) (4)

and coefficients (h)0` = 〈h, Y 0
` 〉.

• H(x̂, ŷ) = H(x̂ · ŷ) is an isotropic convolution kernel.

• Follows from the Spherical Harmonic Addition Theorem.

• (3) is self-contained and completely defines the Spatio-Spectral SLSHT.

• (4) just shows the relationship to the symmetric spatial window h(x̂).

• Not a profound improvement but cleaner and simpler.
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Kernel-Based Spatio-Spatial SLSHT I

Now for something weird. . .
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Kernel-Based Spatio-Spatial SLSHT II

• Fourier Transform, Spherical Harmonic Transform, Spatio-Spectral SLSHT
are Integral Transforms

• (Also for discrete spectra the inverse transforms being series are essentially
Integral Transform-like)

• So it is strange to get, next, a non-integral transform. In fact it looks odd,
simple and probably useless (or is it?).

• (It has an odd-looking name.)

22 / 33



Kernel-Based Spatio-Spatial SLSHT III

The Spatio-Spatial SLSHT is defined by

g(x̂; ẑ) :=
∑

`,m

g(x̂; `,m)Y m
` (ẑ), x̂, ẑ ∈ S2, (5)

which is the ISHT in the 2nd argument of (3).

In kernel form, Kernel-Based Spatio-Spatial SLSHT,

g(x̂; ẑ) := H(x̂ · ẑ)f(ẑ), x̂, ẑ ∈ S2, (6)

• No integral. No Integral Transform.

• Just the integrand in the Kernel-Based Spatio-Spectral SLSHT (3)

• Here the cartesian product domain is S2 × S2 — didn’t we want that?

• Holds the same information as the original Spatio-Spectral SLSHT
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Kernel-Based Spatio-Spatial SLSHT IV

g(x̂; ẑ) := H(x̂ · ẑ)f(ẑ), x̂, ẑ ∈ S2,

• x̂ is the spatial portion (”Spatio-”)

• ẑ is the spatial representation of the spectral portion (”Spatial”)

• on S2 × S2

• inversion example:

f(x̂) =
1

H(1)
g(x̂; x̂), where H(1) 6= 0

• leads to fast new spatio-spectral transforms and inverses [5]

• leads to O(L) improvement over existing (non-symmetric) SS-algorithms
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Kernel-Based Spectro-Spatial SLSHT

Another transform.

The Kernel-Based Spectro-Spatial SLSHT of a signal f(·) can be written

g(p, q; ẑ) := f(ẑ)

∫

S2
H(x̂ · ẑ)Y q

p (x̂) ds(x̂), ẑ ∈ S2, (7)

using the isotropic convolution kernel H(·), given in (4).

• p, q is the spectral representation of the spatial portion (”Spectro-”)

• ẑ is the spatial representation of the spectral portion (”Spatial”)

• LSD-version
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Kernel-Based Spectro-Spectral SLSHT

Yet another transform.

The Kernel-Based Spectro-Spectral SLSHT of a signal f(·) can be written

g(p, q; `,m) :=

∫

S2

∫

S2
H(x̂ · ŷ)f(ŷ)Y m

` (ŷ)Y q
p (x̂) ds(ŷ)ds(x̂), (8)

using the isotropic convolution kernel H(·), given in (4).

• p, q is the spectral representation of the spatial portion (”Spectro-”)

• `,m is the spectral portion (”Spectral”)

• cartesian product domain is Z× Z (nice)

• naturally get here computationally but tends to be a false-friend
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Four SLSHT Transforms

g(x̂; `,m) g(x̂; ẑ)

g(p, q; `,m) g(p, q; ẑ)

2-SHT

2-ISHT

2-SHT

2-ISHT

1-SHT1-ISHT 1-SHT 1-ISHT

Figure: Transformations between the four variants of the SLSHT. In notation,
1-(I)SHT/2-(I)SHT denotes the (I)SHT on the 1st/2nd argument.
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Kernel Ponderings

• Write the integral transform using kernel K as LK . With K positive
definite then we can work in a “smoother and smaller” space

L1/2
K : f ∈ L2(S2) −→ h = L1/2

K f

This describes all the functions in the new space as the low-pass filtered
versions of finite energy functions.

• If the filtering is strong enough (Hilbert-Schmidt) then we can manufacture
RKHS’s.

• Strict band-limiting to degree L is a degenerate version of this, ends up
being a subspace.

• The square root operator generates of new smooth space that generally is
not a subspace of L2(S2). The inner-product is different to incorporate the
decay of the eigenvalues.
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Slepian Ponderings

• Can generalise the concentration measures in spatial and spectral domains,
without damaging the nice properties — incorporate different tapers.

• “Remarkable” dual-orthogonality of Slepian eigen-functions is a general
feature of an abstract problem, not a happy accident. So there are
Slepian-like alternatives, for example, which might suppress the wildness of
the eigenfunctions near the edges of spatial regions.
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