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Introduction



Signals living on the sphere naturally arise in many fields, ranging 
from biomedical imaging, or geophysics, to astrophysics and others...
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With spherical sampling issues at the core of all corresponding signal processing 
considerations...

Motivation



I. A new sampling theorem for band limited signals 

!
!
II. Sparsity and dimensionality implications for compressed sensing 

!
!

Conclusions
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We discuss “Nyquist” sampling on the sphere and highlight 
its implications for compressed sensing.

Overview
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Presentation summary
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I. 
Sampling theorem(s)



* Scalar and spin square integrable functions on the sphere...
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for colatitude

and longitude

Spin function

Scalar product

Invariant measure

Harmonic analysis



* Orthonormal spherical harmonic basis...
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For

and with

Harmonic analysis



* Spherical harmonic coefficients of a function...
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(Forward transform)

(Inverse transform)

Harmonic analysis



sflm = 0,8` � L

* Band limitation: for a band limit    , the continuous signal is defined by exactly       
spherical harmonic coefficients... a sampling theorem is about: how many samples are 
needed on the sphere to recover the signal.
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L2L

Harmonic analysis



* Required numbers of sampling points [restrict to iso-latitude pixelisations for 
separations of variables, leading to state-of-art complexity          ]...
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Existing exact sampling theorems



* Sampling distributions (same color code)...
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Existing sampling theorems



* The factorization of rotations implies a Fourier expansion of Wigner-d functions, so 
that spherical harmonic coefficients can be obtained from Fourier coefficients...
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|O(L3)Hence

For

and

Novel sampling theorem



* Extending the functions by symmetry to the torus does it all...
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sf2D Fourier coefficients of 

Novel sampling theorem



* The algorithm provides an exact implicit quadrature rule for the harmonic coefficients:
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Forward harmonic transform



* Required numbers of sampling points...
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McEwen & Wiaux Sampling

NMW = (L� 1)(2L� 1) + 1

Existing sampling theorems



* The inverse transform algorithm proceeds from the same symmetrization arguments:
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Inverse harmonic transform
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* The algorithm is stable up to at least up to 4096...
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Instabilities in recurrence relations 
computing the Wigner-d functions 
lead to errors blowing up.GL

DH

MW

Algorithm exactness
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* The continual use of FFTs makes the algorithm really fast...
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O(L3) scaling

MW

DH

GL

Algorithm complexity and speed



* The algorithm is also shipped with an explicit quadrature rule for integration from 
          points ...
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with

and

⇠ L2

Quadrature rule
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II. 
Compressed sensing



* Earth topography map at a band limit           ...
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L = 32

Original map Incomplete 
measurements 

taken at random: 
compressed sensing!

TV inpainting illustration



* The measurement operator     simply consists in a selection operator...

22

M < NMW

For

with

(simple selection matrix)

�

The inverse problem



* The signal is sparse in the magnitude of its spherical gradient. The TV norm is 
defined as a continuous norm on the sphere... Also, sparsity    will be minimized on 
grids with minimum number of samples!
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for the spherical gradient

From the quadrature rule, the TV norm reads as a weighted l1-norm of the gradient:

K

Sparsity



* The minimization problem can be posed in the spatial domain for dimensionality 
          , or in the harmonic domain for improved dimensionality      ! 
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N > L2 L2

with

Harmonic setting:

and identifying the vector of spherical harmonic coefficients.

Spatial setting:

Dimensionality
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* In a compressed sensing approach the under-sampling rate scales with sparsity, 
                     , hence favoring a setting with both lower dimensionality and sparsity, 
as confirmed by simulation results:    
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M/N / K

Reconstruction results



* Illustration:
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DH, spatial setting

M/L2 = 1/4

DH, harmonic setting

Reconstruction results
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M/L2 = 1/4

MW, spatial setting MW, harmonic setting

* Illustration:

Reconstruction results
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M/L2 = 1/2

DH, spatial setting DH, harmonic setting

* Illustration:

Reconstruction results
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M/L2 = 1/2

MW, spatial setting MW, harmonic setting

* Illustration:

Reconstruction results



M/L2 = 1
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DH, spatial setting DH, harmonic setting

* Illustration:

Reconstruction results
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M/L2 = 1

MW, spatial setting MW, harmonic setting

* Illustration:

Reconstruction results
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M/L2 = NMW/L2 ⇠ 2

DH, spatial setting DH, harmonic setting

* Illustration:

Reconstruction results
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Original map Original map

* Illustration:

Reconstruction results
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MW, spatial setting MW, harmonic setting

M/L2 = NMW/L2 ⇠ 2

* Illustration:

Reconstruction results
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Original map Original map

* Illustration:

Reconstruction results
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Conclusion
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In a compressed sensing perspective, improving the “Nyquist” rate has 
important implications for dimensionality, when the signal is 

recovered in the spatial domain, for and sparsity for a class of priors 
defined in the spatial domain.

We have introduced a novel sampling theorem on equiangular grids on 
the sphere requiring only          points, shipped with fast (         ) and 

exact spherical harmonic transforms, improving the state-of-the-art.
⇠ 2L2 O(L3)

Application: e.g. diffusion MRI, CMB ...

Application: e.g. radio interferometry, CMB 
inpainting ...

Take-home messages


